
Vishay Roederstein

AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

APPLICATIONS

High current and high pulse operations

REFERENCE STANDARDS

IEC 60384-17

MARKING

Manufacturer's logo; code for dielectric material; manufacturer's type designation; C-code; rated voltage-code; tolerance-code; special n °C-value; tolerance; rated voltage; year and week; manufacturer's location

DIELECTRIC

Polypropylene film

ELECTRODES

Metallized

CONSTRUCTION

Series construction

RATED (DC) VOLTAGE

630 V, 850 V, 1250 V, 1600 V

RATED (AC) VOLTAGE

300 V, 400 V, 450 V, 600 V

FEATURES

Supplied loose in box, taped on ammopack or reel available on request

RoHS compliant

ENCAPSULATION

RoHS

Plastic-wrapped, epoxy resin sealed. Flame retardant.

CLIMATIC TESTING CLASS ACC. TO IEC 60068-1

55/110/56

CAPACITANCE RANGE (E12 SERIES)

0.1 μF to 3.3 μF

CAPACITANCE TOLERANCE

±5%

LEADS

Tinned wire

RATED TEMPERATURE

35 °C

MAXIMUM APPLICATION TEMPERATURE

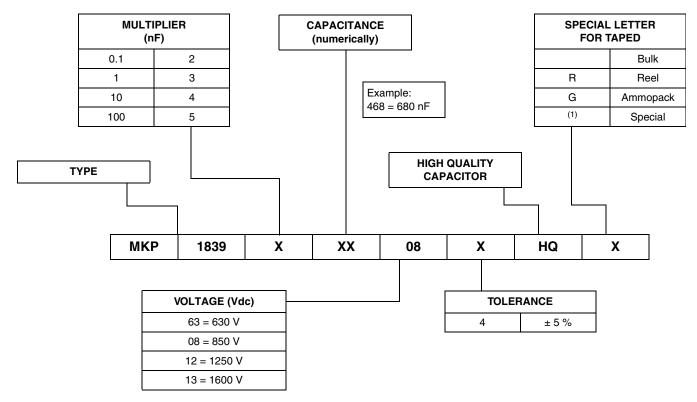
At 85 °C: $U_C = 1.0 U_R$ at 110 °C: $U_C = 0.7 U_R$

PULL TEST ON LEADS

 \geq 20 N in direction of leads according to IEC 60068-2-21

BENT TEST ON LEADS 2 bends trough 90° with half of the force used in pull test

RELIABILITY


Operation life > 300 000 h Failure rate < 5 FIT (40 $^\circ C$ and 0.5 x U_R)

DETAIL SPECIFICATION

For more detailed data and test requirements contact: <u>dc-film@vishay.com</u>

COMPOSITION OF CATALOG NUMBER

Notes

⁽¹⁾ For detailed tape specifications refer to "Packaging Information": www.vishay.com/doc?28139 or end of catalog

SPECIFIC REFERENCE DATA

DESCRIPTION			VAL	.UE		
Tangent of loss angle:	at 1 kHz		at 10 kHz		at 100 kHz	
0.1 μ F < C \leq 0.47 μ F	\leq 3 x 10 ⁻⁴		≤ 5 x	10-4	≤ 35 x 10 ⁻⁴	
0.47 μ F < C \leq 1 μ F	\leq 3 x 10 ⁻⁴		≤ 8 x	10 ⁻⁴	\le 50 x 10 ⁻⁴	
1 μ F < C \leq 0.33 μ F	\leq 3 x 10 ⁻⁴		≤ 10 x	< 10 ⁻⁴	≤ 60 x 10 ⁻⁴	
Rated voltage pulse slope	630 Vdc	5	350 Vdc	1250 Vdc	1600 Vdc	
(dU/dt) _R at U _{Rdc}	500 V/μs	1	000 V/μs	1000 V/μs	1000 V/µs	
U _{P-P} peak-to-peak voltage	700 V		1130 V	1400 V	1600 V	
R between leads, for C \leq 0.33 μF at 500 V; 1 min	> 100 GΩ			·		
RC between leads, for C > 0.33 μ F at 500 V; 1 min	> 30 000 s					
R between interconnecting and wrapped film at 500 V; 1 min	> 100 GΩ					
Withstanding (DC) voltage (cut off	1008 V		1360 V	2000 V	2560 V	
current 10 mA); rise time 100 V/s			1 n	nin		
Withstanding (DC) voltage between leads and wrapped film (1.4 x U _{Rac} + 2000)	2840 V; 1 min					
Maximum application temperature			110	°C		

Document Number: 28162 Revision: 21-Oct-08

Vishay Roederstein AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

	VOLTAGE CODE 63 630 Vdc/300 Vac					VOLTAGE CODE 08 850 Vdc/400 Vac				
Capacitance	m	nsions ax. m)	Mass	d _t ± 0.08 mm	SPQ ⁽¹⁾	m	nsions ax. ım)	Mass	d _t ± 0.08 mm	SPQ ⁽¹⁾
(µF)	D	L	(g)	(mm)	Pieces	D	L	(g)	(mm)	Pieces
0.1	7	26.5	0.9	0.8	2000	8.5	31.5	1.6	0.8	1500
0.15	8	26.5	1.2	0.8	1750	10	31.5	2.3	0.8	1000
0.18	8.5	26.5	1.4	0.8	1500	11	31.5	2.7	0.8	850
0.22	9.5	26.5	1.6	0.8	1250	11.5	31.5	3.2	0.8	750
0.27	10	26.5	1.9	0.8	1000	13	31.5	3.9	0.8	600
0.33	11	26.5	2.3	0.8	900	14	31.5	4.6	0.8	500
0.39	10.5	31.5	2.6	0.8	900	15	31.5	5.4	0.8	1000
0.47	11	31.5	3.0	0.8	750	16.5	31.5	6.5	0.8	900
0.56	12	31.5	3.5	0.8	650	15	31.5	5.4	0.8	1000
0.68	13	31.5	4.2	0.8	500	16.5	31.5	6.5	0.8	850
0.82	14	31.5	5.1	0.8	1000	18	31.5	7.8	1.0	750
1	16	31.5	6.1	0.8	900	19.5	31.5	9.4	1.0	600
1.5	19	31.5	9.0	1.0	600	24	31.5	13.9	1.0	400
2.2	23	31.5	13.1	1.0	450	-	-	-	-	-
3.3	28	31.5	19.5	1.0	300	-	-	-	-	-

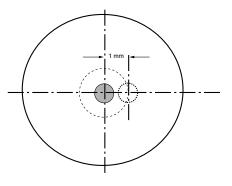
			DLTAGE CO 250 Vdc/450			VOLTAGE CODE 13 1600 Vdc/600 Vac				
Capacitance	m	nsions ax. m)	Mass	d _t ± 0.08 mm	SPQ ⁽¹⁾	m	nsions ax. ım)	Mass	d _t ± 0.08 mm	SPQ ⁽¹⁾
(µF)	D	L	(g)	(mm)	Pieces	D	L	(g)	(mm)	Pieces
0.1	8.5	31.5	1.6	0.8	1500	10.5	31.5	2.7	0.8	1000
0.15	10	31.5	2.3	0.8	1000	12.5	31.5	3.9	0.8	600
0.18	11	31.5	2.7	0.8	1000	13.5	31.5	4.6	0.8	500
0.22	11.5	31.5	3.2	0.8	800	15	31.5	5.5	0.8	500
0.27	13	31.5	3.9	0.8	650	16.5	31.5	6.7	0.8	900
0.33	14	31.5	4.6	0.8	500	18	31.5	8.1	1.0	750
0.39	15	31.5	5.4	0.8	1000	19.5	31.5	9.5	1.0	600
0.47	16.5	31.5	6.5	0.8	900	21.5	31.5	11.3	1.0	500
0.56	18	31.5	7.7	1.0	750	23.5	31.5	13.4	1.0	400
0.68	20	31.5	9.2	1.0	600	25.5	31.5	16.2	1.0	350
0.82	21.5	31.5	11.1	1.0	500	-	-	-	-	-
1	23.5	31.5	13.4	1.0	400	-	-	-	-	-
1.5	-	-	-	-	-	-	-	-	-	-
2.2	-	-	-	-	-	-	-	-	-	-
3.3	-	-	-	-	-	-	-	-	-	-

Note

(1) SPQ = Standard Packaging Quantity

www.vishay.com 3

MOUNTING


Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the capacitor body is in good contact with the printed-circuit board.

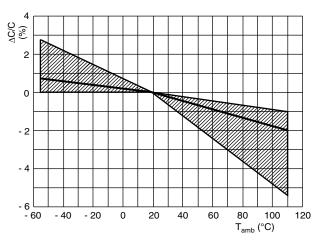
- For L \leq 19 mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped
- The maximum diameter and length of the capacitors are specified in the dimensions table
- Eccentricity as shown in the drawing below:

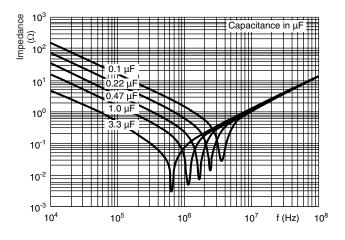
Storage Temperature

• Storage temperature: T_{stg} = - 25 °C to + 40 °C with RH maximum 80 % without condensation

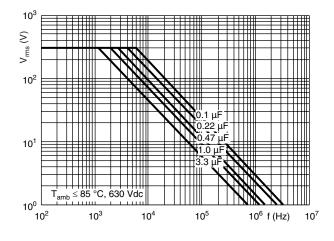
Ratings and Characteristics Reference Conditions

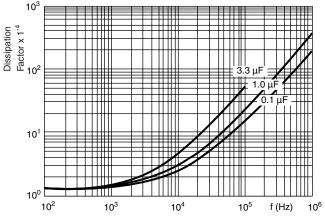
Unless otherwise specified, all electrical values apply to an ambient free air temperature of 23 ± 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 ± 2 %.


For reference testing, a conditioning period shall be applied over 96 ± 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

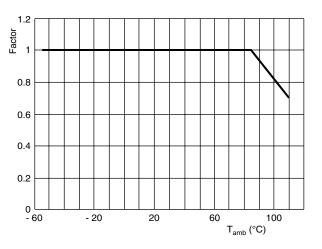

Vishay Roederstein AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

CHARACTERISTICS

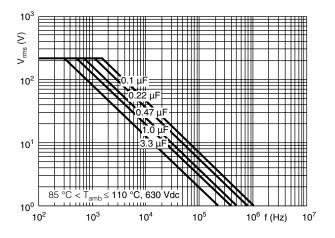

Capacitance as a function of ambient temperature (typical curve)


Impedance as a function of frequency (typical curve)

Max. RMS Voltage (sinewave) as a function of frequency



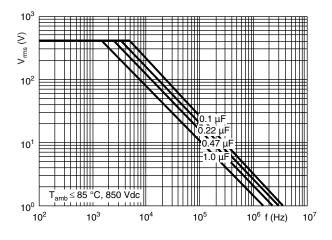
. - 2



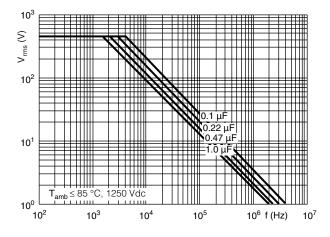
Tangent of loss angle as a function of frequency (typical curve)

Max. DC and AC voltage as a function of temperature

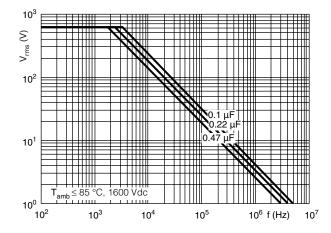
Max. RMS Voltage (sinewave) as a function of frequency

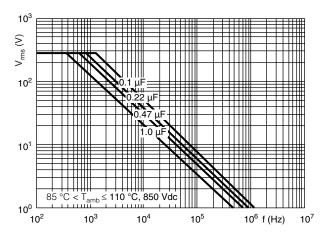


www.vishay.com 5

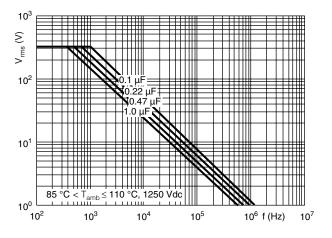


Max. RMS Voltage (sinewave) as a function of frequency

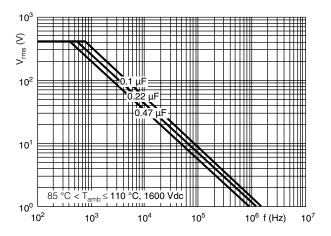

Max. RMS Voltage (sinewave) as a function of frequency



Max. RMS Voltage (sinewave) as a function of frequency



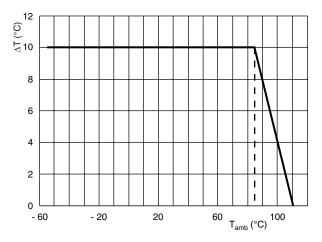
Max. RMS Voltage (sinewave) as a function of frequency



Max. RMS Voltage (sinewave) as a function of frequency

Max. RMS Voltage (sinewave) as a function of frequency

Document Number: 28162 Revision: 21-Oct-08


Vishay Roederstein AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

 10^{6}

Insulation resistance as a function of ambient temperature

(typical curve)

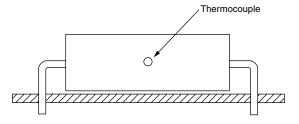
Max. allowed component rise (ΔT) as a function of the ambient temperature (T_{amb})

HEAT CONDUCTIVITY (G) AS A FUNCTION OF CAPACITOR BODY THICKNESS IN mW/°C

DIAMETER	HEAT CONDUCTIVITY (mW/°C)				
(mm)	PITCH 26.5 mm	PITCH 31.5 mm			
7.0	8	-			
8.0	10	-			
8.5	11	12			
9.5	12	-			
10.0	13	15			
10.5	-	16			
11.0	15	17			
11.5	-	18			
12.0	-	19			
12.5	-	20			
13.0	-	21			
13.5	-	22			
14.0	-	23			
15.0	-	25			
16.0	-	28			
16.5	-	29			
18.0	-	32			
19.0	-	34			
19.5	-	36			
20.0	-	37			
21.5	-	40			
23.0	-	44			
23.5	-	45			
24.0	-	47			
25.5	-	51			
28.0	-	57			

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical information film capacitors with the typical tgd of the curves".

The component temperature rise (Δ T) can be measured (see section "Measuring the component temperature" for more details) or calculated by Δ T = P/G:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by ΔT = T_C - $T_{amb}.$

To avoid radiation or convection, the capacitor should be tested in a wind-free.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{Rdc})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than the maximum (U_{P-P}) to avoid the ionisation inception level
- The voltage pulse slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see figure max. allowed component temperature rise).
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table "Heat conductivity".
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Vishay Roederstein AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

Voltage Conditions for 6 Above

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 110 °C
Maximum continuous RMS voltage	U _{Rac}	See "Maximum AC voltage as a function of temperature par. characteristics"
Maximum temporary RMS-overvoltage (< 24 h)	1.25 x U _{Rac}	0.875 x U _{Rac}
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{Rdc}	1.1 x U _{Rdc}

INSPECTION REQUIREMENTS

General Notes:

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-17 and Specific Reference Data".

Group C Inspection Requirements

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS		
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1					
4.1	Dimensions (detail)		As specified in chapter "General Data" of this specification		
4.3.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz			
4.3	Robustness of terminations	Tensile: Load 30 N; 10 s Bending: Load 15 N; 90°	No visible damage		
4.4	Resistance to soldering heat	No pre-drying Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s			
4.4.2	Final measurements	Visual examination	No visible damage Legible marking		
		Capacitance	$ \Delta C/C \le 2$ % of the value measured initially		
		Tangent of loss angle	Increase of tan δ : For C \leq 470 nF \leq 0.001 (10 x 10 ⁻⁴) For C > 470 nF \leq 0.0015 (15 x 10 ⁻⁴) Compared to values measured initially		
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification		
4.14	Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: Cotton wool Immersion time: 5 ± 0.5 min	No visible damage Legible marking		
	ROUP C1B PART OF SAMPLE B-GROUP C1				
4.6.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz			
4.6	Rapid change of temperature	$\theta A = -55 ^{\circ} C$ $\theta B = +110 ^{\circ} C$ 5 cycles Duration t = 30 min			
		Visual examination	No visible damage		

For technical questions, contact: dc-film@vishay.com

SUB-CL	AUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.7	Vibration	Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s ² (whichever is less severe) Total duration 6 h	
4.7.2	Final inspection	Visual examination	No visible damage
4.9	Shock	Mounting: See section "Mounting" for more information Pulse shape: Half sine Acceleration: 490 m/s ² Duration of pulse: 11 ms	
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 2$ % of the value measured initally
		Tangent of loss angle	Increase of tan δ : For C \leq 470 nF \leq 0.001 (10 x 10 ⁻⁴) For C > 470 nF \leq 0.0015 (15 x 10 ⁻⁴) Compared to values measured initially \geq 50 % of values specified in section
			"Insulation Resistance" of this specification
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: 110 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: - 55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchambers	No breakdown or flashover
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured initially
		Tangent of loss angle	Increase of tan δ : For C \leq 470 nF \leq 0.001 (10 x 10 ⁻⁴) For C > 470 nF \leq 0.0015 (15 x 10 ⁻⁴) Compared to values measured in
		Inculation registeries	4.3.1 or 4.6.1 as applicable
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GF	ROUP C2		
4.11	Damp heat steady state	Capacitance	
4.11.1	Initial measurements	Tangent of loss angle at 1 kHz	
		Visual examination	No visible damage Legible marking
4.11.3	Final measurements	Voltage proof = U_{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown or flashover
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.11.1.
		Tangent of loss angle	Increase of tan δ : For C \leq 470 nF \leq 0.001 (10 x 10 ⁻⁴).
			For C > 470 nF \leq 0.0015 (15 x 10 ⁻⁴) Compared to values measured in 4.11.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification

Document Number: 28162 Revision: 21-Oct-08 For technical questions, contact: dc-film@vishay.com

Vishay Roederstein AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-G	ROUP C3 A		
4.12.1	Endurance test at 50 Hz alternative voltage	Duration: 2000 h x U _{Rdc} at 85 °C 0.875 x U _{Rdc} at 110 °C	
4.12.1.	1 Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.12.1.	3 Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \leq 5$ % compared to values measured in 4.12.1.1
		Tangent of loss angle	$\begin{array}{l} \mbox{Increase of tan δ:} \\ \mbox{For C} \leq 470 \ nF \leq 0.001 \ (10 \ x \ 10^{-4}) \\ \mbox{For C} > 470 \ nF \leq 0.0015 \ (15 \ x \ 10^{-4}) \\ \mbox{Compared to values measured in } 4.12.1.1 \end{array}$
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-G	ROUP C4		
4.2.6	Temperature characteristics Initial measurement Intermediate measurements	Capacitance Capacitance at - 55 °C Capacitance at 20 °C Capacitance at 110 °C	For - 55 °C to 20 °C $0 \% \le \Delta C/C \le 2.75 \%$ or for 20 °C to 110 °C: $-5.5 \% \le \Delta C/C \le 0 \%$ As specified in section "Capacitance" of this specification
4.13	Charge and discharge	10 000 cycles Charged to U _{Rdc} Discharge resistance:	
		$R = \frac{U_n(Vdc)}{2.5 \times C(dU/dt)}$	
4.13.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.13.3	Final measurements	Capacitance	$ \Delta C/C \leq 3$ % of the value measured in 4.13.1
		Tangent of loss angle	Increase of tan δ: For C ≤ 470 nF ≤ 0.001 (10 x 10 ⁻⁴) For C > 470 nF ≤ 0.0015 (15 x 10 ⁻⁴) Compared to values measured in 4.13.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.