

MLX SRC HEAVY DUTY CONNECTOR SYSTEM

TABLE OF CONTENTS:

1.0 S	СОРЕ				2	
2.0 P	RODUCT DESCRIPTION	۱			2	
3.0 A	3.0 APPLICABLE DOCUMENTS AND SPECIFICATIONS					
4.0 R	ATINGS				4	
5.0 P	ERFORMANCE				5	
6.0 Q	UALIFICATION TESTIN	G			8	
7.0 P	ACKAGING				9	
REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.	
	EC No: MG2009-0028	CON		, l ⁻		
D	DATE: 2008 10 06	CON		1	1 of 13	
	<u>DATE.</u> 2000-10-00					
		Therefore View	CHECKED BY	APPROVE		
P	5-850/0-001	i norsten vogt	Richard Siller			
	TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC					

1.0 SCOPE

This specification covers the MLX SRC product line. THE Standard Pitch of 4.00 mm (0.157 inch) is terminated with 22 to 14 AWG wire using crimp technology with tin or select gold plated terminals.

The high current option with a Pitch of 8.00 mm (0.315 inch) is terminated with 12 to 8 AWG Wire using crimp technology with tin plated terminals.

2.0 PRODUCT DESCRIPTION

2.1 PRODUCT NAME AND SERIES NUMBER (S)

A. FEMALE CONNECTOR

I. Connector assembly:	85070-0500
II. Female terminal AWG 22 to 14	
1. Tin	33012
2. Gold	33001
III. Female terminal AWG 12 to 8	
1. Tin	19434

B. MALE CONNECTOR

I. Connector assembly:	85071-0100
II. Male terminal AWG 22 to 14	
1. tin	33000
2. gold	33011
III. Male terminal AWG 12 to 8	
1. Tin	19431

C. UNUSED CAVITY CIRCUIT PLUG

AWG 22 to 14	34345-0001
AWG 12 to 8	19431-0013

REVISION:	ECR/ECN INFORMATION:	<u>TITLE:</u>			SHEET No.
	EC No: MG2009-0028	CONNECTOR SYSTEM		2 of 13	
	<u>DATE:</u> 2008-10-06		MLX SRC		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	/ED BY:
PS-85070-001		Thorsten Vogt	Richard Siller	Franz F	Pacher
TEMPI ATE FILENAME: PRODUCT SPECISIZE AIV/ 1) DOC					

2.2 DIMENSIONS, MATERIALS, PLATINGS AND MARKINGS

A. HOUSINGS;

Receptacle --- 20% glass filled SPS / nylon blend

Blade --- 20% glass filled SPS / nylon blend

Blind plug --- glass filled PBT (100% regrind)

B. TERMINALS;

- Tin receptacle terminal --- Copper alloy c19025 (0.25)/ .010" thick. plating advanced tin barrier underplate 10/40 micro inches thick. Tin reflow overplate 20/40 micro inches.
- II. Gold receptacle terminal --- Copper alloy c19025 (0.25)/ .010" thick. plating advanced tin barrier underplate 20/30 micro inches thick. plating contact area – gold overplate 30 micro inches minimum. crimp area – nickel underplate 5/20 microinches. electrodeposited Tin overplate 100/160 micro inches.
- III. Tin blade terminal --- Copper alloy c19025 (0.30)/ .012" thick. plating advanced tin barrier underplate 10/40 micro inches thick. Tin reflow overplate 20/40 micro inches.
- IV. Gold blade terminal --- Copper alloy c19025 (0.30)/ .012" thick. plating advanced tin barrier underplate 20/30 micro inches thick. plating contact area – gold overplate 30 micro inches minimum. crimp area – nickel underplate 5/10 microinches. electrodeposited Tin overplate 100/160 micro inches.

2.3 SAFETY AGENCY APPROVALS

UL FILE NUMBER	NOT APPLICABLE
CSA FILE NUMBER	NOT APPLICABLE
TUV LICENSE NUMBER	NOT APPLICABLE

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
	EC No: MG2009-0028	CONNECTOR SYSTEM		1	3 of 13
	<u>DATE:</u> 2008-10-06	MLX SRC			J 01 13
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
PS-85070-001		Thorsten Vogt	Richard Siller	Franz F	Pacher
	TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC				[SIZE_A](V.1).DOC

3.0 APPLICABLE DOCUMENTS AND SPECIFICATIONS

- A. MLX SRC FEMALE ASSEMBLY 84 PIN SALES DRAWING SD-85070-050
- B. MLX SRC MALE ASSEMBLY 84 PIN SALES DRAWING SD-85071-010

4.0 RATINGS

4.1 VOLTAGE

 \leq 500 VDC

4.2 CURRENT

Current is dependent on connector size, ambient temperature, blade size and related factors. Actual maximum current rating is application dependent and should be evaluated for each use.

A. TERMINALS AWG 22 - 14:

AWG	Amperes
22	10
20	12.5
18	15
16	17
14	18

B. TERMINALS AWG 12 - 10 : 30.0 AMPERES

C. TERMINALS AWG 8 : 40.0AMPERES

4.3 TEMPERATURE

Operating: -40° C to + 125 °C Non operating: -40° C to + 125 °C

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
	EC No: MG2009-0028	CONNECTOR SYSTEM		1	4 of 13
	<u>DATE:</u> 2008-10-06	MLX SRC			4 01 13
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	/ED BY:
PS-85070-001		Thorsten Vogt	Richard Siller	Franz F	Pacher
	TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC				

5.0 PERFORMANCE

5.1 ELECTRICAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT
1	Contact Resistance (Low Level) <i>EIA-364-23B</i>	Mate connectors: limiting the open circuit voltage of 20 mV and a maximum current of 100 mA. See appendix 1 for set up.	10 mΩ Maximum (initial)
2	Contact Resistance @ Rated Current	Mate connectors: apply rated current, measure mV drop across mated terminals. See appendix 1 for set up.	10 mΩ Maximum
3	Insulation Resistance EIA-364-21D	Apply a voltage of 500 VDC between adjacent terminals and between terminals to ground.	20 MΩ Minimum
4	Temperature Rise (via Current Cycling) SAE/USCAR-2, section 5.3.4	Mate terminals: measure the temperature rise at the rated current after: 1008 hours of benchtop testing (45 minutes ON and 15 minutes OFF per hour).	Temperature rise over Ambient: +55 Cº Maximum

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
CONNECTOR SYSTEM		Λ	5 of 13		
	<u>DATE:</u> 2008-10-06	MLX SRC			3 01 13
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
PS-85070-001		Thorsten Vogt Richard Siller Franz Pacher			Pacher
TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC					

5.2 MECHANICAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT
5	Terminal Insertion and Extraction Forces	Insert and withdraw terminal (male to female) at a rate of 50 ± 6 mm (2 ± ¼ inch) per minute.	5 N Maximum
6	Connector Mate and Unmate Forces	Mate and unmate connector (male to female) at a rate of 50 ± 6 mm (2 ± ¼ inch) per minute.	250 N Maximum
7	Terminal Retention Force (in Housing) <i>EIA-364-29C</i>	Axial pullout force on the terminal in the housing at a rate of 50 ± 6 mm ($2 \pm \frac{1}{4}$ inch) per minute.	50 N Minimum
8	Terminal Insertion Force (into Housing)	Apply an axial insertion force on the terminal at a rate of 50 ± 6 mm ($2 \pm \frac{1}{4}$ inch).	30 N Maximum
9	Polarization Feature Effectiveness USCAR-2, 5.4.4	Secure connector halves to tensile tester. Attempt to mate connectors in orientations shown in appendix 2.	220 N Maximum force to be applied
10	Terminal Position Assurance (TPA) Insertion Force (into housing)	Measure the force to insert the TPA from the preload (as shipped) position to the final position at a rate of $50 \pm 6 \text{ mm} (2 \pm \frac{1}{4} \text{ inch})$. See appendix 3 for test set up.	130 N Maximum
11	Terminal Position Assurance (TPA) Extraction Force (in housing)	Measure the force to extract the TPA from the final position to the preload position (as shipped) at a rate of 50 ± 6 mm ($2 \pm \frac{1}{4}$ inch). See appendix 3 for test set up.	130 N Maximum
12	Mechanical Shock SAE J2030, 6.16	10 cycles of $\frac{1}{2}$ sine pulses, 50g, 11ms duration X,Y,Z. Monitor for discontinuity \ge 1µs @100mA	20 mΩ Maximum change in contact resistance
13	Vibration SAE J2030, 6.15	Sine sweep 10 to 2000Hz, 1.78mm displacement, 20g max acceleration. 24h duration. Monitor for discontinuity ≥ 1µs @100mA	20 mΩ Maximum change in contact resistance

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.	
	<u>EC No:</u> MG2009-0028	CONNECTOR SYSTEM		Λ	6 of 13	
	DATE: 2008-10-06					
DOCUMENT NUMBER:		CREATED / REVISED BY: CHECKED BY: APPROVE		/ED BY:		
PS-85070-001		Thorsten Vogt	Richard Siller Franz Pacher			
TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC						

5.3 ENVIROMENTAL REQUIREMENTS

ITEM	DESCRIPTION	TEST CONDITION	REQUIREMENT	
14	Thermal Shock	Mate connectors; expose to 10 cycles of: <u>Temperature °C</u> <u>Duration (Minutes)</u>	20 mΩ Maximum change in contact	
	SAE J2030, 6.13	-55 +0/-5 30 +125 +5/-0 30	resistance	
15	Temperature/ Humidity SAE J2030, 6.24	Mate connectors and subject connector system to 42 cycles as per appendix	20 mΩ Maximum change in contact resistance Isolation Resistance of 20 Megohms @ 500 VDC MINIMUM	
16	Salt Fog SAE J2030, 6.12	Mate the connector and submerge in a fine mist of 5% by wgt salt solution for 96 hours at 35°C. Allow to air dry for 4 hours	20 mΩ Maximum change in contact resistance	
17	Fluid Resistance SAE J2030, 6.12	Submerge connector assemblies in the following fluids: Motor oil, Brake fluid, Diesel fuel, 50/50 antifreeze mixture, Roundup Original, Gear oil for 5 cycles of 5 minutes	Inspect for damage Isolation Resistance of 20 Megohms @ 500 VDC MINIMUM	
18	IP 69K DIN 40050-9	IP6X - Expose connectors to suspended dust under pressure IPX9 – Expose mated connector to water from any direction under extreme pressure/ steam jet cleaner	According to ISO 20653	

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
D	<u>EC No:</u> MG2009-0028 DATE: 2008-10-06	CONNECTOR SYSTEM MLX SRC		7 of 13	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
PS-85070-001		Thorsten Vogt	Richard Siller Franz Pacher		
TEMPLATE FILENAME: PRODUCT_SPECISIZE_AI(V_1).DOC					

6.0 QUALIFICATION TESTING

				Test Grou	up		
	А	В	С	D	E	F	G
ual inspection	1,5	1	1	1	1,3	1,5	1,3
ntact resistance		2,5	2,5,7	2,4			
ntact registance	24						
ritact resistance	2,4						
			3.8			24	<u> </u>
istance			5,0			2,4	
nnerature rise	3						<u> </u>
minal	0						2
ertion/extraction							2
nnector							2
te/unmate							-
minal retention							2
ce in housing							-
minal insertion							2
ce into housing							_
arization							2
ture							
ectiveness							
A insertion							2
ce							
A extraction							2
ce							
chanical Shock		3					
ration		4					
ermal Shock			4				
mperature			6				
nidity							
t Spray				3			
id resistance					2		
9K							1
	v level) tact resistance <u>ated current</u> ulation istance nperature rise minal ertion/extraction nnector te/unmate minal retention ise in housing minal insertion ise into housing arization ture ectiveness A insertion ise A extraction ise chanical Shock nperature nidity t Spray id resistance iok	v level) ntact resistance 2,4 ated current ated current ulation istance nperature rise 3 minal ated current arization ated current nnector ated current te/unmate ated current minal ated current ated current ated current anperature rise 3 minal ated current ated current ated current anperature rise 3 minal ated current minal ated current minal ated current ated current ated current minal ated current minal retention ated current atization atization ture atization chanical Shock atization ation atization atization atization atization atization atization atization atization atization atization	v level) 1tact resistance 2,4 ated current	v level) 2,4 ated current 3,8 istance 3,8 istance 3 nperature rise 3 minal	v level) 2,4 ated current 3,8 istance 3,8 istance 3 nperature rise 3 minal	v level) 2,4 ated current 3,8 Jation 3,8 istance 3 nperature rise 3 minal	v level) 2,4 ttact resistance 2,4 ated current 3,8 ulation 3,8 istance 3 nperature rise 3 artion/extraction

Thorsten Vogt

Richard Siller

Franz Pacher

TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC

PS-85070-001

7.0 PACKAGING

Parts shall be packaged to protect against damage during handling, transit and storage. Please refer to packaging spec.: PK 85070-001 (Female); PK 85071-001 (Male)

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
	EC No: MG2009-0028	CONNECTOR SYSTEM		9 of 13	
	<u>DATE:</u> 2008-10-06	MLX SRC			30113
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
PS-85070-001		Thorsten Vogt	Richard Siller	Franz Pacher	
TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC					

Appendix 4: Temperature/humidity cycling

molex[®]

Test samples to be placed in a temperature/humidity chamber and shall be subjected to 42 cycles described as follows:

- a. Chamber temperature raised to 55°C at 3°C/min ± 1°C/min.
- b. Chamber held for 16 h at a relative humidity of $95\% \pm 5\%$.
- c. Chamber temperature lowered to -55°C at 3°C/min ± 1°C/min.
- d. Chamber held for 2 h.
- e. Chamber temperature raised to 125°C at 3°C/min ± 1°C/min.
- f. Chamber held for 2 h.
- g. Chamber temperature lowered to 25°C at 3°C/min ± 1°C/min.
- h. Chamber held for remainder of 24h cycle.

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
П	<u>EC No:</u> MG2009-0028	CONNECTOR SYSTEM		13 of 13	
	<u>DATE:</u> 2008-10-06				
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
PS-85070-001		Thorsten Vogt	Richard Siller Franz Pacher		
TEMPLATE FILENAME: PRODUCT_SPEC[SIZE_A](V.1).DOC					