
101 Innovation Drive
San Jose, CA 95134
www.altera.com

EMI_RLDRAM_II_UG-2.1

Section IV. RLDRAM II Controller with UniPHY IP User
Guide

External Memory Interface Handbook Volume 3

Document last updated for Altera Complete Design Suite version:
Document publication date:

10.1
December 2010

Subscribe

External Memory Interface Handbook Volume 3 Section
IV. RLDRAM II Controller with UniPHY IP User Guide

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Contents

Chapter 1. About This IP
Release Information . 1–1
Device Family Support . 1–2
Features . 1–2
Unsupported Features . 1–3
MegaCore Verification . 1–3
Resource Utilization . 1–4
System Requirements . 1–4

Chapter 2. Getting Started
Installation and Licensing . 2–1
Design Flows . 2–1
MegaWizard Plug-In Manager Flow . 2–3

Specifying Parameters . 2–3
Simulate the IP Core . 2–4

SOPC Builder Design Flow . 2–5
Specify Parameters . 2–5
Complete the SOPC Builder System . 2–6
Simulate the System . 2–7

Qsys System Integration Tool Design Flow . 2–7
Specify Parameters . 2–8
Complete the Qsys System . 2–8
Simulate the System . 2–9

HardCopy Migration Design Guidelines . 2–9
Differences in UniPHY IP Generated with HardCopy Migration Support . 2–10

ROM Loader for Designs Using Nios II Sequencer . 2–10
PLL/DLL Run-time Reconfiguration . 2–11

Generated Files . 2–13
MegaWizard Plug-in Manager Flow . 2–13

Synthesis . 2–13
Simulation . 2–14
Example Design . 2–14

SOPC Builder Flow . 2–16
Qsys Flow . 2–16

Synthesis . 2–16
Verilog Simulation . 2–17
VHDL Simulation . 2–18

Chapter 3. Parameter Settings
General Settings . 3–1

Clocks . 3–1
Advanced PHY Settings . 3–1
Topology . 3–2
Controller Settings . 3–2

Memory Parameters . 3–3
Memory Timing . 3–3
Board Settings . 3–4

Setup and Hold Derating . 3–4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

iv Contents

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Intersymbol Interference . 3–5
Board Skews . 3–6

Chapter 4. Constraining and Compiling
Add Pin and DQ Group Assignments . 4–1
Board Settings Tab . 4–1
Compile the Design . 4–2

Chapter 5. Functional Description—Controller
Block Description . 5–1

Avalon-MM Slave Interface . 5–1
Write Data FIFO Buffer . 5–2
Command Issuing FSM . 5–2
Refresh Timer . 5–2
Timer Module . 5–2
AFI . 5–2

User-Controlled Features . 5–2
Error Detection Parity . 5–3
User-Controlled Refresh . 5–3

Avalon-MM and Memory Data Width . 5–3
Signal Description . 5–3

Avalon-MM Slave Interface . 5–4

Chapter 6. Functional Description—UniPHY
Block Description . 6–1

I/O Pads . 6–1
Reset and Clock Generation . 6–2
Address and Command Datapath . 6–3
Write Datapath . 6–4
Read Datapath . 6–5
Sequencer . 6–6

Interfaces . 6–7
The Memory Interface . 6–7
The DLL and PLL Sharing Interface . 6–8
The OCT Sharing Interface . 6–9

UniPHY Signals . 6–10
AFI Signal Names . 6–15

PHY-to-Controller Interfaces . 6–16
Using a Custom Controller . 6–21
Using a Vendor-Specific Memory Model . 6–21

Chapter 7. Functional Description—Example Top-Level Project
Example Driver . 7–2

Read and Write Generation . 7–2
Individual Read and Write Generation . 7–2
Block Read and Write Generation . 7–3

Address and Burst Length Generation . 7–3
Sequential Addressing . 7–3
Random Addressing . 7–3
Sequential and Random Interleaved Addressing . 7–3

Example Driver Signals . 7–3
Example Driver Add-Ons . 7–4

User Refresh Generator . 7–4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Contents v

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Refresh Monitor . 7–4
Data Corrupter . 7–4

Chapter 8. Latency
Variable Controller Latency . 8–1

Chapter 9. Timing Diagrams

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

vi Contents

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

1. About This IP

The Altera RLDRAM II controller with UniPHY provides a simplified interface to
industry-standard RLDRAM II.

The RLDRAM II controller with UniPHY offers full-rate or half-rate RLDRAM II
interfaces. The UniPHY IP is an interface between a memory controller and memory
devices and performs read and write operations to the memory. The UniPHY IP
creates the datapath between the memory device and the memory controller and user
logic in various Altera devices.

The Quartus II software generates an example top-level project, consisting of an
example driver, and your RLDRAM II controller custom variation. The controller
instantiates an instance of the UniPHY.

The example top-level project is a fully-functional design that you can simulate,
synthesize, and use in hardware. The example driver is a self-test module that issues
read and write commands to the controller and checks the read data to produce the
pass or fail and test-complete signals.

1 For device families not supported by the UniPHY IP, use the Altera legacy integrated
static datapath and controller MegaCore functions.

You can, alternatively, create your own memory interface datapath using the
ALTDLL and ALTDQ_DQS megafunctions, available in the Quartus II software, but
you must then consider all of the aspects of the design including timing analysis and
design constraints.

The UniPHY IP offers the Altera PHY interface (AFI). The AFI results in a simple
connection between the PHY and controller.

Release Information
Table 1–1 provides information about this release of the RLDRAM II controller with
UniPHY.

Altera verifies that the current version of the Quartus II software compiles the
previous version of each MegaCore function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Table 1–1. Release Information

Item Description

Version 10.1

Release Date December 2010

Ordering Codes IP-RLDII/UNI

Vendor ID 6AF7

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–2 Chapter 1: About This IP
Device Family Support

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Device Family Support
IP cores provide the following levels of support for target Altera device families:

■ For FPGA support:

■ Preliminary—verified with preliminary timing models for this device

■ Final—verified with final timing models for this device

■ For ASIC devices (HardCopy families)

■ HardCopy companion—verified with preliminary timing models for
HardCopy companion device

■ HardCopy compilation—verifed with final timing models for HardCopy
device

Table 1–2 shows the level of support offered by the RLDRAM II controller to each of
the Altera device families.

f For information about supported clock rates for external memory interfaces, refer to
the External Memory Interface System Specifications section in volume 1 of the External
Memory Interface Handbook.

Features
Table 1–3 summarizes key feature support for the RLDRAM II Controller with
UniPHY.

Table 1–2. Device Family Support

Device Family Support

Arria II GZ Preliminary

Stratix® III (except Vcc = 0.9v) Final

Stratix IV Final

Stratix V Preliminary

HardCopy III HardCopy companion

HardCopy IV HardCopy companion

Other device families No support

Table 1–3. Key Feature Support for RLDRAM II Controller with UniPHY (Part 1 of 2)

Key Feature RLDRAM II UniPHY

High-performance controller (HPC) —

High-performance controller II (HPC II) v
Half-rate core logic and user interface v
Full-rate core logic and user interface v
Burst length (half-rate) 4 or 8

Burst length (full-rate) 2, 4, or 8

Reduced controller latency (1) (2) v
Read latency —

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: About This IP 1–3
Unsupported Features

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Unsupported Features
This section summarizes unsupported features for the RLDRAM II Controller with
UniPHY:

■ Arria II GX

■ Cyclone III

■ Cyclone IV

■ Depth expansion

■ Dynamic read latency change

■ ECC

■ Multicast write

■ Multiplexed addressing

■ Multiple chip select

■ RLDRAM II SIO devices

■ Separate I/O

■ Stratix III devices with Vcc=0.9v

■ Timing simulation

■ VHDL simulation support for Arria II GX, Arria II GZ, Stratix III, Stratix IV, and
Stratix V devices

MegaCore Verification
Altera has carried out extensive random, directed tests with functional test coverage
using industry-standard models to ensure the functionality of the RLDRAM II
controller with UniPHY.

Maximum data width 72 bits

ODT (in memory device) v
Notes for Table 1–3:

(1) The maximum achievable clock rate when reduced controller latency is selected must be attained through
Quatrus II software timing analysis of your complete design.

(2) Not available in Arria II GX devices.

Table 1–3. Key Feature Support for RLDRAM II Controller with UniPHY (Part 2 of 2)

Key Feature RLDRAM II UniPHY

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–4 Chapter 1: About This IP
Resource Utilization

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Resource Utilization
This section lists resource utilization for the QDR II and QDR II+ SRAM controllers
with UniPHY for supported device families. Resource utilizations are derived with all
parameters at their default values.

Table 1–4 shows the typical resource usage of the RLDRAM II controller with UniPHY
in the Quartus II software version 10.1 for Arria II GZ, Stratix III, Stratix IV, and
Stratix V devices.

System Requirements
The RLDRAM II controller with UniPHY is part of the MegaCore IP Library, which is
distributed with the Quartus II software.

f For system requirements and installation instructions, refer to Altera Software
Installation & Licensing.

Table 1–4. Resource Utilization in Arria II GZ, Stratix III, Stratix IV, and Stratix V
Devices (Note 1)

PHY
Rate

Memory
Width
(Bits)

Combinational
ALUTS Logic Registers Memory

(Bits)
M9K

Blocks

Half

9 829 763 288 1

18 1145 1147 576 2

36 1713 1861 1152 4

Full

9 892 839 288 1

18 1182 1197 576 1

36 1678 1874 1152 2

Note to Table 1–4:

(1) Half-rate designs use the same amount of memory as full-rate designs, but the data is organized in a different way
(half the width, double the depth) and the design may need more M9K resources.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

2. Getting Started

This chapter provides a general overview of the Altera IP core design flow to help you
quickly get started with any Altera IP core. The Altera IP Library is installed as part of
the Quartus II installation process. You can select and parameterize any Altera IP core
from the library. Altera provides an integrated parameter editor that allows you to
customize IP cores to support a wide variety of applications. The parameter editor
guides you through the setting of parameter values and selection of optional ports.
The following sections describe the general design flow and use of Altera IP cores.

Installation and Licensing
The Altera IP Library is distributed with the Quartus II software and downloadable
from the Altera website (www.altera.com).

Figure 2–1 shows the directory structure after you install an Altera IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can evaluate an IP core in simulation and in hardware until you are satisfied with
its functionality and performance. Some IP cores require that you purchase a license
for the IP core when you want to take your design to production. After you purchase
a license for an Altera IP core, you can request a license file from the Altera Licensing
page of the Altera website and install the license on your computer. For additional
information, refer to Altera Software Installation and Licensing.

Design Flows
You can use the following flow(s) to parameterize Altera IP cores:

■ MegaWizard Plug-In Manager Flow

■ SOPC Builder Flow

■ Qsys Flow

Figure 2–1. IP core Directory Structure

<path>

<IP core name> or uniPHY
Contains the IP core files and documentation

common
Contains shared components

Installation directory

ip
Contains the Altera IP Library and third-party IP cores

altera
Contains the Altera IP Library

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–2 Chapter 2: Getting Started
Design Flows

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

c Altera's Qsys system integration tool is now available as beta for evaluation
in the Quartus II software subscription edition version 10.1. Altera does not
recommend using the beta release of Qsys in the Quartus II software
version 10.1 for designs that are close to completion and are meeting design
requirements. Before using Qsys, review the Quartus II Software Version 10.1
Release Notes and AN 632: SOPC Builder to Qsys Migration Guidelines for
known issues and limitations. To submit general feedback or technical
support on the beta release of Qsys, submit a service request through
mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

The MegaWizard Plug-In Manager flow offers the following advantages:

■ Allows you to parameterize an IP core variant and instantiate into an existing
design

■ For some IP cores, this flow generates a complete example design and testbench.

The SOPC Builder flow offer the following advantages:

■ Generates simulation environment

■ Allows you to integrate Altera-provided custom components

■ Uses Avalon®memory-mapped (Avalon-MM) interfaces

Figure 2–2. Design Flows

Select Design Flow

Specify Parameters

Qsys or
SOPC Builder

Flow
MegaWizard
Flow

Complete Qsys or
SOPC Builder System

Specify Parameters

IP Complete

Perform
Functional Simulation

Debug Design

Does
Simulation Give

Expected Results?

Yes

Optional

Add Constraints
and Compile Design

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

The Qsys flow offers the following additional advantages over SOPC Builder:

■ Provides visualization of hierarchical designs

■ Allows greater performance through interconnect elements and pipelining

■ Provides closer integration with the Quartus II software

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-In Manager flow allows you to customize your IP core and
manually integrate the function into your design.

Specifying Parameters
To specify IP core parameters with the MegaWizard Plug-In Manager, follow these
steps:

1. Create a Quartus II project using the New Project Wizard available from the File
menu.

2. In the Quartus II software, launch the MegaWizard Plug-in Manager from the
Tools menu, and follow the prompts in the MegaWizard Plug-In Manager
interface to create or edit a custom IP core variation.

3. To select a specific Altera IP core, click the IP core in the Installed Plug-Ins list in
the MegaWizard Plug-In Manager.

4. Specify the parameters on the Parameter Settings pages. For detailed explanations
of these parameters, refer to the “Parameter Settings” chapter in this document.

1 Some IP cores provide preset parameters for specific applications. If you
wish to use preset parameters, click the arrow to expand the Presets list,
select the desired preset, and then click Apply. To modify preset settings, in
a text editor edit the <installation directory>\ip\altera\uniphy\lib\<IP
core>.qprs file.

5. If the IP core provides a simulation model, specify appropriate options in the
wizard to generate a simulation model.

1 Altera IP supports a variety of simulation models, including
simulation-specific IP functional simulation models and encrypted RTL
models, and plain text RTL models. These are all cycle-accurate models. The
models allow for fast functional simulation of your IP core instance using
industry-standard VHDL or Verilog HDL simulators. For some cores, only
the plain text RTL model is generated, and you can simulate that model.

f For more information about functional simulation models for Altera IP
cores, refer to Simulating Altera Designs in volume 3 of the Quartus II
Handbook.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

6. If the parameter editor includes EDA and Summary tabs, follow these steps:

a. Some third-party synthesis tools can use a netlist that contains the structure of
an IP core but no detailed logic to optimize timing and performance of the
design containing it. To use this feature if your synthesis tool and IP core
support it, turn on Generate netlist.

b. On the Summary tab, if available, select the files you want to generate. A gray
checkmark indicates a file that is automatically generated. All other files are
optional.

1 If file selection is supported for your IP core, after you generate the core, a
generation report (<variation name>.html) appears in your project directory.
This file contains information about the generated files.

7. Click the Finish button, the parameter editor generates the top-level HDL code for
your IP core, and a simulation directory which includes files for simulation.

1 The Finish button may be unavailable until all parameterization errors
listed in the messages window are corrected.

8. Click Yes if you are prompted to add the Quartus II IP File (.qip) to the current
Quartus II project. You can also turn on Automatically add Quartus II IP Files to
all projects.

You can now integrate your custom IP core instance in your design, simulate, and
compile. While integrating your IP core instance into your design, you must make
appropriate pin assignments. You can create virtual pin to avoid making specific pin
assignments for top-level signals while you are simulating and not ready to map the
design to hardware.

For some IP cores, the generation process also creates a complete example design in
the <variation_name>_example_design_fileset/example_project/ directory. This
example demonstrates how to instantiate and connect the IP core.

1 For information about the Quartus II software, including virtual pins and the
MegaWizard Plug-In Manager, refer to Quartus II Help.

Simulate the IP Core
You can simulate your IP core variation with the functional simulation model and the
testbench or example design generated with your IP core. The functional simulation
model and testbench files are generated in a project subdirectory. This directory may
also include scripts to compile and run the testbench.

For a complete list of models or libraries required to simulate your IP core, refer to the
scripts provided with the testbench.

For more information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–5
SOPC Builder Design Flow

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

SOPC Builder Design Flow
You can use SOPC Builder to build a system that includes your customized IP core.
You easily can add other components and quickly create an SOPC Builder system.
SOPC Builder automatically generates HDL files that include all of the specified
components and interconnections. SOPC Builder defines default connections, which
you can modify. The HDL files are ready to be compiled by the Quartus II software to
produce output files for programming an Altera device. SOPC Builder generates a
simulation testbench module for supported cores that includes basic transactions to
validate the HDL files. Figure 2–3 shows a block diagram of an example SOPC
Builder system.

f For more information about system interconnect fabric, refer to the System Interconnect
Fabric for Memory-Mapped Interfaces and System Interconnect Fabric for Streaming
Interfaces chapters in the SOPC Builder User Guide and to the Avalon Interface
Specifications.

f For more information about SOPC Builder and the Quartus II software, refer to the
SOPC Builder Features and Building Systems with SOPC Builder sections in the SOPC
Builder User Guide and to Quartus II Help.

Specify Parameters
To specify IP core parameters in the SOPC Builder flow, follow these steps:

Figure 2–3. SOPC Builder System

Altera IP Core
Simulation

Testbench Module

System Interconnect Fabric

Peripheral 1

SOPC Builder System

Altera IP Core
Instance

Peripheral 2 Peripheral 3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–6 Chapter 2: Getting Started
SOPC Builder Design Flow

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

4. On the System Contents tab, double-click the name of your IP core to add it to
your system. The relevant parameter editor appears.

5. Specify the required parameters in the parameter editor. For detailed explanations
of these parameters, refer to the “Parameter Settings” chapter in this document.

1 Some IP cores provide preset parameters for specific applications. If you
wish to use preset parameters, click the arrow to expand the Presets list,
select the desired preset, and then click Apply. To modify preset settings, in
a text editor edit the <installation directory>\ip\altera\uniphy\lib\<IP
core>.qprs file.

1 If your design includes external memory interface IP cores, you must turn
on Generate power of two bus widths on the PHY Settings tab when
parameterizing those cores.

6. Click Finish to complete the IP core instance and add it to the system.

1 The Finish button may be unavailable until all parameterization errors
listed in the messages window are corrected.

Complete the SOPC Builder System
To complete the SOPC Builder system, follow these steps:

1. Add and parameterize any additional components. Some IP cores include a
complete SOPC Builder system design example.

2. Use the Connection panel on the System Contents tab to connect the components.

3. By default, clock names are not displayed. To display clock names in the Module
Name column and the clocks in the Clock column in the System Contents tab,
click Filters to display the Filters dialog box. In the Filter list, click All.

4. If you intend to simulate your SOPC builder system, on the System Generation
tab, turn on Simulation to generate simulation files for your system.

5. Click Generate to generate the system. SOPC Builder generates the system and
produces the <system name>.qip file that contains the assignments and
information required to process the IP core or system in the Quartus II Compiler.

6. In the Quartus II software, click Add/Remove Files in Project and add the .qip file
to the project.

7. Compile your design in the Quartus II software.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–7
Qsys System Integration Tool Design Flow

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Simulate the System
During system generation, you can specify whether SOPC Builder generates a
simulation model and testbench for the entire system, which you can use to easily
simulate your system in any of Altera's supported simulation tools. SOPC Builder
also generates a set of ModelSim® Tcl scripts and macros that you can use to compile
the testbench and plain-text RTL design files that describe your system in the
ModelSim simulation software.

f For information about the latest Altera-supported simulation tools, refer to the
Quartus II Software Release Notes.

f For information about simulating SOPC Builder systems, refer to the SOPC Builder
User Guide and AN 351: Simulating Nios II Embedded Processor Designs.

f For general information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

Qsys System Integration Tool Design Flow
You can use the Qsys system integration tool to build a system that includes your
customized IP core. You easily can add other components and quickly create a Qsys
system. Qsys automatically generates HDL files that include all of the specified
components and interconnections. In Qsys, you specify the connections you want.
The HDL files are ready to be compiled by the Quartus II software to produce output
files for programming an Altera device. Qsys generates Verilog HDL simulation
models for the IP cores that comprise your system. Figure 2–4 shows a high level
block diagram of an example Qsys system.

Figure 2–4. Example Qsys System

DDR3
SDRAM

Ethernet
Subsystem

Ethernet

Embedded Cntl

PCI Express
Subsystem

Qsys System
PCIe to Ethernet Bridge

PCIe

CSR
Mem
Mstr

Mem
Slave

PHY
Cntl

Mem
Mstr

CSR

DDR3
SDRAM

Controller

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–8 Chapter 2: Getting Started
Qsys System Integration Tool Design Flow

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

f For more information about the Qsys system interconnect, refer to the Qsys
Interconnect chapter in volume 1 of the Quartus II Handbook and to the Avalon Interface
Specifications.

f For more information about the Qsys tool and the Quartus II software, refer to the
System Design with Qsys section in volume 1 of the Quartus II Handbook and to Quartus
II Help.

Specify Parameters
To specify parameters for your IP core using the Qsys flow, follow these steps:

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

2. On the Tools menu, click Qsys (Beta).

3. On the System Contents tab, double-click the name of your IP core to add it to
your system. The relevant parameter editor appears.

4. Specify the required parameters in all tabs in the Qsys tool. For detailed
explanations of these parameters, refer to the “Parameter Settings” chapter in this
document.

1 If your design includes external memory interface IP cores, you must turn
on Generate power of two bus widths on the PHY Settings tab when
parameterizing those cores.

1 Some IP cores provide preset parameters for specific applications. If you
wish to use preset parameters, click the arrow to expand the Presets list,
select the desired preset, and then click Apply. To modify preset settings, in
a text editor edit the <installation directory>\ip\altera\uniphy\lib\<IP
core>.qprs file.

5. Click Finish to complete the IP core instance and add it to the system.

1 The Finish button may be unavailable until all parameterization errors
listed in the messages window are corrected.

Complete the Qsys System
To complete the Qsys system, follow these steps:

1. Add and parameterize any additional components.

2. Connect the components using the Connection panel on the System Contents tab.

3. In the Export As column, enter the name of any connections that should be a
top-level Qsys system port. If the Export As column is not present, click the
Project Settings tab and turn off Use SOPC Builder port naming.

4. If you intend to simulate your Qsys system, on the Generation tab, turn on one or
more options under Simulation to generate desired simulation files.

5. If your system is not part of a Quartus II project and you want to generate
synthesis RTL files, turn on Create synthesis RTL files.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–9
HardCopy Migration Design Guidelines

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

6. Click Generate to generate the system. Qsys generates the system and produces
the <system name>.qip file that contains the assignments and information required
to process the IP core or system in the Quartus II Compiler.

7. In the Quartus II software, click Add/Remove Files in Project and add the .qip file
to the project.

8. Compile your project in the Quartus II software.

Simulate the System
During system generation, Qsys generates a functional simulation model—or
example design that includes a testbench—which you can use to simulate your
system in any Altera-supported simulation tool.

f For information about the latest Altera-supported simulation tools, refer to the
Quartus II Software Release Notes.

f For general information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

f For information about simulating Qsys systems, refer to the System Design with Qsys
section in volume 1 of the Quartus II Handbook.

HardCopy Migration Design Guidelines
If you intend to target your design to a HardCopy® device, ensure you use the
following design guidelines:

■ On the General Settings page of the DDR2 SDRAM Controller with UniPHY or
DDR3 SDRAM Controller with UniPHY MegaWizard, turn on HardCopy
Compatibility Mode, and then specify whether the Reconfigurable PLL Location
is Top_Bottom or Left_Right.

1 Altera recommends that you set the Reconfigurable PLL Location to the
same side as your memory interface.

When turned on, the HardCopy Compatibility Mode option enables run-time
reconfiguration for all phase-locked loops (PLLs) and delay-locked loops (DLLs)
instantiated in memory interfaces that are configured in PLL and DLL masters,
and brings the necessary reconfiguration signals to the top level of the design.

f “Top-Level HardCopy Migration Signals” on page 6–12 lists the top-level
signals generated for HardCopy migration.

■ Enable run-time reconfiguration mode for all PLLs and DLLs instantiated in
interfaces that are configured in PLL and DLL slaves.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–10 Chapter 2: Getting Started
HardCopy Migration Design Guidelines

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

f For information about PLL megafunctions, refer to the Phase-Locked Loop
(ALTPLL) Megafunction User Guide and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunctions User Guide. For
information about DLL megafunctions, refer to the ALTDLL and
ALTDQ_DQS Megafunctions User Guide.

■ Ensure that you place all memory interface pins close together. If, for example,
address pins are located far away from data pins, closing timing might be difficult.

You can use the example top-level project that is generated when you turn on
HardCopy Migration as a guide to help you connect the necessary signals in your
design.

Differences in UniPHY IP Generated with HardCopy Migration Support
When you generate a UniPHY memory interface for HardCopy device support,
certain features in the IP are enabled that do not exist when you generate the IP core
for only the FPGA. This section discusses those additional enabled features.

ROM Loader for Designs Using Nios II Sequencer
An additional ROM loader is intantiated in the design for UniPHY designs that use
the Nios II sequencer. The Nios II sequencer instruction code resides in RAM on either
the HardCopy or FPGA device.

When you target only an FPGA device, the RAM is initialized when the device is
programmed; however, HardCopy devices are not programmed and therefore the
RAM cannot be initialized in this fashion. Instead, the Nios II sequencer instruction
code must be stored in an external, non-volatile, ROM that loads the Nios II sequencer
RAM through a ROM loader. You must attach the ROM loader to the appropriate pins
connected to the external non-volatile ROM.

Table 2–1 summarizes the ports exposed at the top level of the PHY+Controller
wrapper to expose the ROM loader utilized by the Nios II-based sequencer within the
DDR2 or DDR3 PHY.

Table 2–1. Top-level Ports that Connect to External ROM for Loading Nios II Code Memory (Part
1 of 2)

Port Name Direction Description

hc_rom_config_clock Input
Write clock for the ROM loader. This clock
is the write clock for the Nios II code
memory.

hc_rom_config_datain Input Data input from external ROM.

hc_rom_config_rom_data_ready Input Asserts to the code memory loader that
the word of memory is ready to be loaded.

hc_rom_config_init Input Signals that the Nios II code memory is
being loaded from the external ROM.

hc_rom_config_init_busy Output

Remains asserted throughout initialization
and becomes inactive when initialization
is complete. soft_reset_n can be
issued after hc_rom_config_init_busy
is deasserted.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–11
HardCopy Migration Design Guidelines

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

PLL/DLL Run-time Reconfiguration
The PLLs and DLLs in the HardCopy design have run-time reconfiguration enabled—
provided that they are not in PLL/DLL slave mode.

When the PLLs and DLLs are generated with reconfiguration enabled, there are extra
signals that must be connected and driven by user logic. In the example design
generated during IP core generation, the PLL/DLL reconfiguration signals are
brought to the top level and connected to constants, as shown in Figure 2–5.

f For information about PLL megafunctions and reconfiguration, refer to the
Phase-Locked Loop (ALTPLL) Megafunction User Guide and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunctions User Guide.

Table 2–2 summarizes the DLL reconfiguration ports exposed at the top level of the
Controller+PHY.

hc_rom_config_rom_rden Output Read-enable signal that connects to the
external ROM.

hc_rom_config_rom_address Output ROM address that connects to the
external ROM.

Table 2–1. Top-level Ports that Connect to External ROM for Loading Nios II Code Memory (Part
2 of 2)

Port Name Direction Description

Figure 2–5. HardCopy UnIPHY Example Design

Table 2–2. DLL Reconfiguration Ports Exposed at Top-Level of Controller+PHY Wrapper (Part 1 of

Port Name Direction Description

hc_dll_config_dll_offset_ctrl_
addnsub

Input

Addition/subtraction control port for the DLL.
This port controls if the delay-offset setting on
hc_dll_config_dll_offset_ctrl_offset is added
or subtracted.

PHY
Controller

ROM
Loader

Interface

AFI

Driver

MM-Slave MM-Master
Avalon MM

Controller+PHY Wrapper

PLL/DLL
Reconfiguration

Interface

Pass/FailMemory

HardCopy Example Design

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–12 Chapter 2: Getting Started
HardCopy Migration Design Guidelines

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Table 2–3 summarizes the ports exposed at the top level of the Controller and PHY
wrapper to allow PLL reconfiguration.

To facilitate placement and timing closure and help compensate for PLLs adjacent to
I/Os and vertical I/O overhang issues that can occur when targeting HardCopy III
and HardCopy IV devices, an additional pipeline stage is added to the write path in
the RTL when you turn on HardCopy Compatibility. The additional pipeline stage is
added in all cases, except when CAS write latency equals 2 (for DDR3) or CAS latency
equals 3 (for DDR2), where the additional pipeline stage is not required to meet
timing requirements. The additional pipeline stage does not affect the overall latency
of the controller.

hc_dll_config_dll_offset_ctrl_
offset

Input

Offset input setting for the PLL. This is a
Gray-coded offset that is added or subtracted
from the current value of the DLL’s delay
chain.

hc_dll_config_dll_offset_ctrl_
offsetctrlout

Output The registered and Gray-coded value of the
current delay-offset setting.

Table 2–3. PLL Reconfiguration Ports Exposed at the Top-Level of Controller+PHY Wrapper

Port Name Direction Description

hc_pll_config_configupdate Input

Control signal to enable PLL reconfiguration.
(Applies to RLDRAMII and QDRII only, the
phase reconfiguration feature for DDR2/3 is
included in the CSR port.)

hc_pll_config_phasecounter
select

Input
Specifies the counter select for dynamic phase
adjustment. (Applies to RLDRAMII and QDR II
only.)

hc_pll_config_phasestep Input
Specifies the phase step for dynamic phase
shifting. (Applies to RLDRAMII and QDR II
only.)

hc_pll_config_phaseupdown Input
Specifies if the phase adjustment should be up
or down. (Applies to RLDRAMII and QDR II
only.)

hc_pll_config_scanclk Input PLL reconfiguration scan chain clock.

hc_pll_config_scanclkena Input Clock enable port of the
hc_pll_config_scanclk clock.

hc_pll_config_scandata Input Serial input data for the PLL reconfiguration
scan chain.

hc_pll_config_phasedone Output

When asserted, this signal indicates to core
logic that phase adjustment is completed and
that the PLL is ready to act on a possible
second adjustment pulse.

hc_pll_config_scandataout Output The data output of the serial scan chain.

hc_pll_config_scandone Output
Asserted when the scan chain write operation
is in progress and is deasserted when the
write operation is complete.

Table 2–2. DLL Reconfiguration Ports Exposed at Top-Level of Controller+PHY Wrapper (Part 2 of

Port Name Direction Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–13
Generated Files

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

f For information about HardCopy issues such as vertical I/O overhang, PLLs adjacent
to I/Os, and timing closure, refer to HardCopy III Device I/O Features in the
HardCopy III Device Handbook, Volume 1, and HardCopy IV Device I/O Features in the
HardCopy IV Device Handbook, Volume 1.

Generated Files
When you complete the IP generation flow, there are generated files created in your
project directory. The directory structure created varies somewhat, depending on the
tool used to parameterize and generate the IP

1 The PLL parameters are statically defined in the <variation_name>_parameters.tcl at
generation time. To ensure timing constraints and timing reports are correct, when
you use the GUI to make changes to the PLL component, apply those changes to the
PLL parameters in this file.

MegaWizard Plug-in Manager Flow
The tables in this section list the generated directory structure and key files of interest
to users, resulting from the MegaWizard Plug-in Manager flow.

Synthesis
Table 2–4 lists the generated directory structure and key files created by the synthesis
flow with the MegaWizard Plug-in Manager.

Table 2–4. Generated Directory Structure and Key Files—MegaWizard Plug-In Manager Synthesis Flow

Directory File Name Description

<working_dir>/ <variation_name>.qip
QIP file which refers to all
generated files in the synthesis
fileset.

<working_dir>/ <variation_name>.v (for Verilog), or
<variation_name>.vhd (for VHDL)

Top-level wrapper for synthesis
files.

<working_dir>/<variation_name>/ <variation_name>_<stamp>.v (1) UniPHY top-level wrapper.

<working_dir>/<variation_name>/ <variation_name>_<stamp>_*.v (1) UniPHY Verilog RTL files.

<working_dir>/<variation_name>/ <variation_name>_<stamp>_*.sv (1) UniPHY SystemVerilog RTL files.

<working_dir>/<variation_name>/ <variation_name>_<stamp>.sdc (1) Synopsys constraints file.

<working_dir>/<variation_name>/ <variation_name>_<stamp>.ppf (1) Pin Planner file.

<working_dir>/<variation_name>/ <variation_name>_<stamp>_pin_assignments.tcl
(1)

Pin constraints script to be run
after synthesis.

<working_dir>/<variation_name>/ <variation_name>_<stamp>_*.tcl (1) Other Tcl scripts.

<working_dir>/<variation_name>/ <variation_name>_<stamp>_readme.txt (1) Readme text file.

Note to Table 2–4:

(1) <stamp> is a unique identifier determined by the MegaWizard Plug-in Manager at generation time.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–14 Chapter 2: Getting Started
Generated Files

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Simulation
Table 2–5 lists the generated directory structure and key files created by the Verilog
simulation flow with the MegaWizard Plug-in Manager.

Table 2–6 lists the generated directory structure and key files created by the VHDL
simulation flow with the MegaWizard Plug-in Manager.

Example Design
Table 2–7 lists the generated directory structure and key files created for the example
design with the MegaWizard Plug-in Manager

Table 2–5. Generated Directory Structure and Key Files—MegaWizard Plug-In Manager Simulation Flow (Verilog)

Directory File Name Description

<working_dir>/<variation_name>
_sim/

<variation_name>.v (for Verilog), or
<variation_name>.vho (for VHDL) UniPHY top-level wrapper.

<working_dir>/<variation_name>
_sim/ <variation_name>_*.v UniPHY Verilog RTL files.

<working_dir>/<variation_name>
_sim/ <variation_name>_*.sv UniPHY SystemVerilog RTL files.

<working_dir>/<variation_name>
_sim/ <variation_name>_readme.txt Readme text file.

Table 2–6. Generated Directory Structure and Key Files—MegaWizard Plug-In Manager Simulation Flow (VHDL)

Directory File Name Description

<working_dir>/<variation_name>
_sim/ <variation_name>.vho UniPHY VHDL top-level module.

<working_dir>/<variation_name>
_sim/

<variation_name>_*.vhd
<variation_name>_*.vho UniPHY simulation VHDL files.

<working_dir>/<variation_name>
_sim/ vhdl_files.txt File list text file.

Table 2–7. Generated Directory Structure and Key Files—MegaWizard Plug-In Manager Example Design (Part 1 of 2)

Directory File Name‘ Description

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>.qip

QIP which refers to UniPHY RTL in
this fileset. This is distinct from
../<variation_name>.qip. This file is
included automatically in the
example project.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>.v UniPHY top-level wrapper.

<working_dir>/<variation_name>
_example_design_fileset <variation_name>_*.v UniPHY Verilog RTL files.

<working_dir>/<variation_name>
_example_design_fileset <variation_name>_*.sv UniPHY SystemVerilog RTL fies.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>.sdc Synopsys constraints file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–15
Generated Files

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

SOPC Builder Flow
Table 2–8 lists the generated directory structure and key files created by the SOPC
Builder flow.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>.ppf Pin Planner file.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>_pin_assignments.tcl Pin constraints script to be run

after synthesis.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>_*.tcl Other Tcl scripts.

<working_dir>/<variation_name>
_example_design_fileset/ <variation_name>_readme.txt Readme text file.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<variation_name>_example_top.qpf Example design project file.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<variation_name>_example_top.qsf Example design project settings
file.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<variation_name>_example_top.v
Top-level wrapper including
UniPHY, traffic generator, and
memory model.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<variation_name>_*.v Other example design Verilog RTL
files.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<variation_name>_*.sv Other example design
SystemVerilog RTL files.

<working_dir>/<variation_name>
_example_design_fileset/example
_project/

<prefix>_mem_model.sv Generic memory model.

<working_dir>/<variation_name>
_example_design_fileset/rtl_sim/ <variation_name>_example_top_tb.v Top-level test bench.

Note to Table 2–7:

(1) <prefix> varies depending on protocol and type of memory model.

Table 2–7. Generated Directory Structure and Key Files—MegaWizard Plug-In Manager Example Design (Part 2 of 2)

Directory File Name‘ Description

Table 2–8. Generated Directory Structure and Key Files—SOPC Builder Flow (Part 1 of 2)

Directory File Name‘ Description

<working_dir>/ <system_name>.qip QIP which refers to all generated
files in the SOPC Builder project.

<working_dir>/ <system_name>.v SOPC Builder system top-level
wrapper.

<working_dir>/ <core_name>_<stamp>.v (1) UniPHY top-level wrapper.

<working_dir>/ <core_name>_<stamp>_*.v (1) UniPHY Verilog RTL files.

<working_dir>/ <core_name>_<stamp>_*.sv (1) UniPHY SystemVerilog RTL files.

<working_dir>/ <core_name>_<stamp>.sdc (1) Synopsys constraints file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–16 Chapter 2: Getting Started
Generated Files

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Qsys Flow
The tables in this section list the generated directory structure and key files of interest
to users, resulting from the Qsys flow

Synthesis
Table 2–9 lists the generated directory structure and key files created by the synthesis
flow with Qsys.

<working_dir>/ <core_name>_<stamp>.ppf (1) Pin Planner file.

<working_dir>/ <core_name>_<stamp>_pin_assignments.tcl (1) Pin constraints script to be run
after synthesis.

<working_dir>/ <core_name>_<stamp>_*.tcl (1) Other Tcl scripts.

<working_dir>/ <core_name>_<stamp>_readme.txt (1) Readme text file.

<working_dir>/ Other IP core files. Other IP cores.

Note to Table 2–8:

(1) <stamp> is a unique identifier determined by SOPC Builder at generation time.

Table 2–8. Generated Directory Structure and Key Files—SOPC Builder Flow (Part 2 of 2)

Directory File Name‘ Description

Table 2–9. Generated Directory Structure and Key Files—Qsys Synthesis Flow (Part 1 of 2)

Directory File Name Description

<working_dir>/<system_name>/
synthesis/ <system_name>.qip

QIP which refers to all generated
files in the Qsys system synthesis
fileset.

<working_dir>/<system_name>/
synthesis/ <system_name>.v Qsys system top-level wrapper.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>.v (1) UniPHY top-level wrapper.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>_*.v (1) UniPHY Verilog RTL files.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>_*.sv (1) UniPHY SystemVerilog RTL files.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>.sdc (1) Synopsys constraints file.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>.ppf (1) Pin Planner file.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>_pin_assignments.tcl (1) Pin constraints script to be run

after synthesis.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>_*.tcl (1) Other Tcl scripts.

<working_dir>/<system_name>/
synthesis/submodules/ <core_name>_<stamp>_readme.txt (1) Readme text file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–17
Generated Files

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Verilog Simulation
Table 2–10 lists the generated directory structure and key files created by the Verilog
simulation flow with Qsys.

VHDL Simulation
Table 2–11 lists the generated directory structure and key files created by the VHDL
simulation flow with Qsys.

<working_dir>/<system_name>/
synthesis/submodules/ Other IP core files Other IP core files.

Note to Table 2–9

(1) <stamp> is a unique identifier created by Qsys during generation.

Table 2–9. Generated Directory Structure and Key Files—Qsys Synthesis Flow (Part 2 of 2)

Directory File Name Description

Table 2–10. Generated Directory Structure and Key Files—Qsys Verilog Simulation

Directory File Name Description

<working_dir>/<system_name>/
sim_verilog/ <system_name>.v Qsys system top-level wrapper.

<working_dir>/<system_name>/
sim_verilog/submodules/ <core_name>_<stamp>.v UniPHY top-level wrapper.

<working_dir>/<system_name>/
sim_verilog/submodules/ <core_name>_<stamp>_*.v UniPHY Verilog RTL files.

<working_dir>/<system_name>/
sim_verilog/submodules/ <core_name>_<stamp>_*.sv UniPHY SystemVerilog RTL

files.

<working_dir>/<system_name>/
sim_verilog/submodules/ <core_name>_<stamp>_readme.txt (1) Readme text file.

<working_dir>/<system_name>/
sim_verilog/submodules/ Other IP core files Other IP core files.

Note for Table 2–10:

(1) <stamp> is a unique identifier created by Qsys during generation.

Table 2–11. Generated Directory Structure and Key Files—Qsys VHDL Simulation

Directory File Name Description

<working_dir>/<system_name>/
sim_vhdl/ <system_name>.vhd Qsys system top-level wrapper.

<working_dir>/<system_name>/
sim_vhdl/submodules/ <core_name>_<stamp>.vho (1) UniPHY VHDL top-level module.

<working_dir>/<system_name>/
sim_vhdl/submodules/

<core_name>_<stamp>_*.vhd
<core_name>_<stamp>_*.vho (1) UniPHY VHDL simulation files.

<working_dir>/<system_name>/
sim_vhdl/submodules/ vhdl_files.txt File list text file.

Note to Table 2–11:

(1) <stamp> is a unique identifier created by Qsys during generation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–18 Chapter 2: Getting Started
Generated Files

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

3. Parameter Settings

This chapter describes the RLDRAM II Controller with UniPHY IP core parameters
that you can set in the parameter editor.

General Settings
The General Settings tab allows you to configure the following parameter settings.

Clocks
Table 3–1 describes the clock settings.

Advanced PHY Settings
Table 3–2 describes the advanced PHY settings.

Table 3–1. Clock Settings

Parameter Description

Memory clock frequency The frequency of the clock that drives the memory device.

PLL reference clock frequency The frequency of the clock that feeds the PLL.

Full or half rate on Avalon-MM
interface

Defines the width of the data bus on the Avalon-MM
interface. A setting of Full results in a width twice the
memory data width. A setting of Half results in a width of
four times the memory data width.

Additional address/command clock
phase

Increases or decreases the phase shift of the
address/command clock. The base phase shift center-
aligns the address/command clock at the memory device.
In some circumstances, you can improve timing by
increasing or decreasing the phase shift.

Table 3–2. Advanced PHY Settings

Parameter Description

Generate power-of-2 bus widths Rounds down the Avalon-MM side data bus to the nearest
power of 2.

Maximum Avalon-MM burst length Specifies the maximum burst length on the Avalon-MM
bus.

I/O standard Specifies the I/O standard voltage.

Master for PLL/DLL sharing

Causes UniPHY to instantiate its own PLL and DLL. All of
the PLL clocks and DLL delay values are exported for use
by other identical UniPHY cores that have this option
turned on.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–2 Chapter 3: Parameter Settings
General Settings

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Topology
Table 3–3 describes the topology settings.

Controller Settings
Table 3–4 describes the controller settings.

Master for OCT control block

Causes UniPHY to instantiate the required OCT control
block. When this parameter is turned off, you must
instantiate this block and connect the termination control
bus signals to the PHY, or share an OCT control block from
another UniPHY instantiation that is in master mode.

Hardcopy compatibility mode

Causes the generated UniPHY memory interface to have all
required HardCopy compatibility options enabled. For
example, PLLs and DLLs will have their reconfiguration
ports exposed.

Example Testbench Simulation options

Skip memory initialization
Causes the example testbench to skip the memory
initialization sequence. This setting does not change the
generated RTL, but can speed up simulation.

Table 3–2. Advanced PHY Settings

Parameter Description

Table 3–3. Topology Settings

Parameter Description

Device width Specifies the number of devices used for width expansion.

Device depth Specifies the number of devices (ranks) used for depth
expansion.

Table 3–4. Controller Settings

Parameter Description

Controller latency Specifies the number of clock cycles required for a request
to pass through an idling controller.

Enable user refresh Enables user-controlled refresh. Refresh signals will have
priority over read/write requests.

Enable error detection parity Enables per-byte parity protection.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Parameter Settings 3–3
Memory Parameters

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Memory Parameters
The Memory Parameters tab allows you to configure memory device parameters. You
can enter parameters manually from the manufacturer’s device data sheet, or you can
populate the fields automatically by selecting the required device from the list of
presets.

Table 3–5 describes the memory parameters.

Memory Timing
The Memory Timing tab allows you to configure memory device timing parameters.
You can enter timing parameters manually from the manufacturer’s device data
sheet, or you can populate the fields automatically by selecting the required device
from the list of presets.

Table 3–6 describes the memory timing parameters.

Table 3–5. Memory Parameters

Parameter Description

Address width The width of the address bus on the memory device.

Data width The width of the data bus on the memory device.

Bank-address width The width of the bank-address bus on the memory device.

Data-mask width The width of the data-mask on the memory device,

QK width The width of the QK (read strobe) bus on the memory
device.

DK width The width of the DK (write strobe) bus on the memory
device.

Burst length The burst length supported by the memory device.

Memory mode register configuration Configuration bits that set the memory mode.

Table 3–6. Memory Timing Parameters (Part 1 of 2)

Parameters Description

Maximum memory clock frequency The maximum frequency at which the memory device can
run.

Refresh interval The refresh interval.

tCKH (%) The input clock (K/K#) high expressed as a percentage of
the full clock period.

tQKH (%) The read clock (QK/QK#) high expressed as a percentage of
tCKH.

tAS Address and control setup to K clock rise.

tAH Address and control hold after K clock rise.

tDS Data setup to clock (K/K#) rise.

tDH Data hold after clock (K/K#) rise.

tQKQ_max QK clock edge to DQ data edge (in same group).

tQKQ_min QK clock edge to DQ data edge (in same group).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–4 Chapter 3: Parameter Settings
Board Settings

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Board Settings
The Board Settings tab allows you to enter values derived from board simulation and
from the manufacturer’s memory device data sheet.

Setup and Hold Derating
The slew rate of output signals affects the setup and hold times of the memory device.
Enter input slew rate derating parameters from the memory device data sheet to
obtain derated setup and hold times.

tCKDK_max Clock to input data clock (max).

tCKDK_min Clock to input data clock (min).

Table 3–6. Memory Timing Parameters (Part 2 of 2)

Parameters Description

Table 3–7. Setup and Hold Derating Parameters (Part 1 of 2)

Parameters Description

tAS Vref to CK/CK# Crossing

For a given address/command and CK/CK# slew rate, the
memory device data sheet provides a corresponding "tAS
Vref to CK/CK# Crossing" value that can be used to
determine the derated address/command setup time.

tAS VIH MIN to CK/CK# Crossing

For a given address/command and CK/CK# slew rate, the
memory device data sheet provides a corresponding "tAS
VIH MIN to CK/CK# Crossing" value that can be used to
determine the derated address/command setup time.

tAH CK/CK# Crossing to Vref

For a given address/command and CK/CK# slew rate, the
memory device data sheet provides a corresponding "tAH
CK/CK# Crossing to Vref" value that can be used to
determine the derated address/command hold time.

tAH CK/CK# Crossing to VIH MIN

For a given address/command and CK/CK# slew rate, the
memory device data sheet provides a corresponding "tAH
CK/CK# Crossing to VIH MIN" value that can be used to
determine the derated address/command hold time.

tDS Vref to CK/CK# Crossing

For a given data and DK/DK# slew rate, the memory device
data sheet provides a corresponding "tDS Vref to CK/CK#
Crossing" value that can be used to determine the derated
data setup time.

tDS VIH MIN to CK/CK# Crossing

For a given data and DK/DK# slew rate, the memory device
data sheet provides a corresponding "tDS VIH MIN to
CK/CK# Crossing" value that can be used to determine the
derated data setup time.

tDH CK/CK# Crossing to Vref

For a given data and DK/DK# slew rate, the memory device
data sheet provides a corresponding "tDH CK/CK# Crossing
to Vref" value that can be used to determine the derated
data hold time.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Parameter Settings 3–5
Board Settings

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Intersymbol Interference
Intersymbol interference (ISI), occurs when a signal is distorted due to the
interference of one symbol with subsequent symbols. Typically, ISI is greater at
device depths greater than one because there are multiple stubs causing reflections.
The advanced I/O timing analysis capabilities of the Quartus II software already
includes ISI effects for device depth of one.

Table 3–8 describes the intersymbol interference settings.

tDH CK/CK# Crossing to VIH MIN

For a given data and DK/DK# slew rate, the memory device
data sheet provides a corresponding "tDH CK/CK# Crossing
to VIH MIN" value that can be used to determine the derated
data hold time.

Derated tAS

The derated address/command setup time is calculated
automatically from the "tAS", the "tAS Vref to CK/CK#
Crossing", and the "tAS VIH MIN to CK/CK# Crossing"
parameters.

Derated tAH

The derated address/command hold time is calculated
automatically from the "tAH", the "tAH CK/CK# Crossing to
Vref", and the "tAH CK/CK# Crossing to VIH MIN"
parameters.

Derated tDS
The derated data setup time is calculated automatically
from the "tDS", the "tDS Vref to CK/CK# Crossing", and the
"tDS VIH MIN to CK/CK# Crossing" parameters.

Derated tDH
The derated data hold time is calculated automatically from
the "tDH", the "tDH CK/CK# Crossing to Vref", and the "tDH
CK/CK# Crossing to VIH MIN" parameters.

Table 3–7. Setup and Hold Derating Parameters (Part 2 of 2)

Parameters Description

Table 3–8. Intersymbol Interference Settings

Parameter Description

Address/command eye reduction
(setup)

The reduction in the eye diagram on the setup side (or left
side of the eye) due to ISI on the address/command signals
compared to a case where there is no ISI.

Address/command eye reduction
(hold)

The reduction in the eye diagram on the hold side (or right
side of the eye) due to ISI on the address/command signals
compared to a case where there is no ISI.

DQ eye reduction

The total reduction in the eye diagram due to ISI on DQ
signals compared to a case where there is no ISI. (It is
assumed that the ISI reduces the eye width symmetrically
on the left and right sides of the eye.)

Delta K arrival time

The increase in variation on the range of arrival times of
DQS compared to a case when there is no ISI. (It is
assumed that the ISI causes DQS to further vary
symmetrically to the left and right.)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–6 Chapter 3: Parameter Settings
Board Settings

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Board Skews
Skews between PCB traces can reduce timing margins.

Table 3–9 describes the board skew settings.

Table 3–9. Board Skews Settings

Parameter Description

Minimum delay difference between
CK and DK

The minimum delay difference between the CK signal and
any DK signal when arriving at the memory device(s). The
value is equal to the minimum delay of the CK signal minus
the maximum delay of the DK signal. The value can be
positive or negative.

Maximum delay difference between
CK and D

The maximum delay difference between the CK signal and
any DK signal when arriving at the memory device(s). The
value is equal to the maximum delay of the CK signal minus
the minimum delay of the DK signal. The value can be
positive or negative.

Maximum delay difference between
devices

The maximun delay difference of data signals between
devices. For example, in a two-device configuration there is
greater propagation delay for data signals going to and
returning from the furthest device relative to the nearest
device.

Maximum skew within QK group The maximum skew between the DQ signals referenced by
a common QK signal.

Maximum skew between QK groups The maximum skew between QK signals of different data
groups.

Maximun skew within
address/command bus

The maximum skew between the address/command
signals.

Average delay difference between
address/command and CK

A value equal to the average of the longest and smallest
address/command signal delay values, minus the delay of
the CK signal. The value can be positive or negative.

Average delay difference between
write data signals and DK

A value equal to the average of the longest and smallest
write data signal delay values, minus the delay of the DK
signal. Write data signals include the DQ and DM signals.
The value can be positive or negative.

Average delay difference between
read data signals and QK

A value equal to the average of the longest and smallest
read data signal delay values, minus the delay of the QK
signal. The value can be positive or negative.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

4. Constraining and Compiling

The Quartus II software generates a Synopsis Design Constraint (.sdc) script,
<variation_name>.sdc, and a pin assignment script,
<variation_name>_pin_assignments.tcl. Both the .sdc and the <variation
name>_pin_assignments.tcl support multiple instances. These scripts iterate through
all instances of the core and apply the same constraints to all of them.

Add Pin and DQ Group Assignments
The pin assignment script, <variation_name>_pin_assignments.tcl, sets up the I/O
standards and the input/output termination for the RLDRAM II controller with
UniPHY. This script also helps to relate the DQ and QK pin groups together for the
Fitter to place them correctly.

The pin assignment script does not create a source clock for the design. You must
create a clock for the design and provide pin assignments for the signals of both the
example driver and testbench that the MegaCore variation generates.

Run the <variation_name>_pin_assignments.tcl to add the input and output
termination, I/O standards, and DQ group assignments to the example design. To
run the pin assignment script, follow these steps:

1. On Processing menu, point to Start, and click Start Analysis and Synthesis.

2. On the Tools menu click Tcl Scripts.

3. Specify the <variation_name>_pin_assignments.tcl file and click Run.

1 If the PLL input reference clock pin is not the same I/O standard as the memory
interface I/Os, the design might not fit into the device because incompatible I/O
standards cannot be placed in the same I/O bank.

Board Settings Tab
The Board Settings tab allows you to enter board-related data. In the Setup and Hold
Derating section, you enter derating parameters from the device data sheet, which the
system uses to calculate derated setup and hold values. In the Intersymbol
Interference and Board Skews sections, you enter information derived during your
PCB development process of prelayout (line) simulation and finally postlayout
(board) simulation.

Timing analysis does not consider bus turnaround; consequently, the controller dead
times are based on assumptions about the user board trace lengths. For timing
analysis to be accurate, board trace delays must not exceed 0.6 ns from FPGA to
memory and from memory to FPGA.

f For more information about how to include your board simulation results in the
Quartus II software and how to assign pins using pin planners, refer to Volume 6:
Design Flow Tutorials of the External Memory Interface Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–2 Chapter 4: Constraining and Compiling
Compile the Design

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Compile the Design
To compile the design, on the Processing menu, click Start Compilation.

After you have compiled the top-level file, you can perform RTL simulation or
program your targeted Altera device to verify the top-level file in hardware.

f For more information about simulating, refer to the Simulation section in volume 4 of
the External Memory Interface Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

5. Functional Description—Controller

The controller translates memory requests from the Avalon Memory-Mapped
(Avalon-MM) interface to AFI, while satisfying timing requirements imposed by the
memory configurations.

Block Description
This topic describes the blocks in the IP. Figure 5–1 shows a block diagram of the
RLDRAM II controller architecture.

Avalon-MM Slave Interface
This Avalon-MM slave interface accepts read and write requests. A simple state
machine represents the state of the command and address registers, which stores the
command and address when a request arrives.

The Avalon-MM slave interface decomposes the Avalon-MM address to the memory
bank, column, and row addresses. The IP automatically maps the bank address to the
LSB of the Avalon address vector.

The Avalon-MM slave interface includes a burst adaptor, which has the following two
parts:

■ The first part is a read and write request combiner that groups requests to
sequential addresses into the native memory burst. Given that the second request
arrives within the read and write latency window of the first request, the
controller can combine and satisfy both requests with a single memory
transaction.

Figure 5–1. RLDRAM II Controller Architecture Block Diagram

Command
Issuing
FSM

Controller
with UniPHY

Avalon-MM Slave
InterfaceAFI to PHY

Write
Data
FIFO

Refresh
Timer

Bank
Timers

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–2 Chapter 5: Functional Description—Controller
User-Controlled Features

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

■ The second part is the burst divider in the front end of the Avalon-MM interface,
which breaks long Avalon bursts into individual requests of sequential addresses,
which then pass to the controller state machine.

Write Data FIFO Buffer
The write data FIFO buffer accepts write data from the Avalon-MM interface. The AFI
controls the subsequent consumption of the FIFO buffer write data.

Command Issuing FSM
The command issuing finite-state machine (FSM) has three states. The controller is in
the INIT state when the PHY initializes the memory. Upon receiving the
afi_cal_success signal, the state transitions to INIT_COMPLETE. If the calibration fails,
afi_cal_fail is asserted and the state transitions to INIT_FAIL. The PHY receives
commands only in the INIT_COMPLETE state.

When a refresh request arrives at the state machine at the same time as a read or write
request, the refresh request takes precedence. The read or write request waits until
there are no more refresh requests, and is issued immediately if timing requirements
are met.

Refresh Timer
With automatic refresh, the refresh timer periodically issues refresh requests to the
command issuing FSM. The refresh interval can be set at generation.

Timer Module
The timer module contains one DQ timer and eight bank timers (one per bank). The
DQ timer tracks how often read and write requests can be issued, to avoid bus
contention. The bank timers track the cycle time (tRC).

The 8-bit wide output bus of the bank timer indicates to the command issuing FSM
whether each bank can be issued a read, write, or refresh command.

AFI

f For information on the AFI, refer to “Functional Description—UniPHY” on page 6–1.

User-Controlled Features
The following features are available on the General Settings tab of the parameter
editor. These features are disabled by default.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Functional Description—Controller 5–3
Avalon-MM and Memory Data Width

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Error Detection Parity
The error detection parity protection feature creates a simple parity encoder block
which processes all read and write data. The error detection feature asserts an error
signal if it detects any corrupted data during the read process. For every 8 bits of write
data, a parity bit is generated and concatenated to the data before it is written to the
memory. During the subsequent read operation, the parity bit is checked against the
data bits to ensure data integrity.

Enabling the error detection parity protection feature reduces the local data width by
one. For example, a nine-bit memory interface will present eight bits of data to the
controller interface.

You can enable error detection parity protection in the Controller Settings section of
the General Settings tab of the parameter editor.

User-Controlled Refresh
The user-controlled refresh feature allows you to take control of the refresh process
that the controller normally performs automatically. You can control when refresh
requests occur, and, if there are multiple memory devices, you control which bank
receives the refresh signal. When you enable this feature, you disable auto-refresh,
and assume responsibility for maintaining the necessary average periodic refresh rate.

You can enable user-controlled refresh in the Controller Settings section of the
General Settings tab of the parameter editor.

Avalon-MM and Memory Data Width
Table 5–1 shows the data width ratio between the memory interface and the
Avalon-MM interface. The half-rate controller does not support burst-of-2 devices
because it under-uses the available memory bandwidth.

Signal Description
This topic discusses the signals for each interface.

f For information on the AFI signals, refer to “UniPHY Signals” on page 6–10.

Table 5–1. Data Width Ratio

Memory Burst Length Half-Rate Designs Full-Rate Designs

 2-word No Support

2:1 4-word
4:1

 8-word

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–4 Chapter 5: Functional Description—Controller
Signal Description

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Avalon-MM Slave Interface
Table 5–2 shows the list of signals of the controller’s Avalon-MM slave interface.

1 The data width of the Avalon-MM interface is restricted to powers of two when using
SOPC Builder or Qsys. Non-power-of-two data widths are supported when using the
MegaWizard Plug-In Manager.

Table 5–2. Avalon-MM Slave Signals

Signal Width Direction Avalon-MM Signal Type Description

avl_size 1 to 11 In burstcount —

avl_ready 1 Out waitrequest_n —

avl_read_req 1 In read —

avl_write_req 1 In write —

avl_addr ≤ 25 In address —

avl_rdata_valid 1 Out readdatavalid —

avl_rdata 18, 36, 72, 144 Out readdata —

avl_wdata 18, 36, 72, 144 In writedata —

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

6. Functional Description—UniPHY

This chapter describes the PHY part of the RLDRAM II controller with UniPHY.

Block Description
The PHY comprises the following major functional units:

■ I/O Pads

■ Reset and Clock Generation

■ Address and Command Datapath

■ Write Datapath

■ Read Datapath

■ Sequencer

Figure 6–1 shows the PHY block diagram.

I/O Pads
The I/O pads contain all the I/O instantiations. The bulk of the UniPHY I/O circuitry
is encapsulated in the ALTDQ_DQS megafunction (ALTDQ_DQS2 for Stratix V series
devices).

Figure 6–1. PHY Block Diagram

I/O PadsExternal
Memory
Device

UniPHY

FPGA

Write
Datapath

Address
and

Command
Datapath

Sequencer
Memory
Controller

Read
Datapath

Reset
Generation

AFI to
Memory

Controller

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–2 Chapter 6: Functional Description—UniPHY
Block Description

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Reset and Clock Generation
The clocking operation in the PHY can be classified into two domains: the
PHY-memory domain and the PHY-AFI domain. The PHY-memory domain
interfaces with the external memory device and is always at full-rate. The PHY-AFI
domain interfaces with the memory controller and can be either a full-rate or half-rate
clock based on the choice of the controller. Table 6–1 lists the clocks required for
half-rate designs.

Table 6–2 lists the clocks required for full-rate designs.

Table 6–1. Clocks—Half-Rate Designs

Clock Source Clock
Rate Phase Clock Network

Type Description

pll_afi_clk PLL: C0 Half 0° Unconstrained Clock for AFI logic.

pll_mem_clk PLL: C1 Full 0°(1)

-45°(2) Dual-regional(4) Output clock to memory.

pll_write_clk PLL: C2 Full
-90°(1)

-135°(2)

45° (3)
Dual-regional(4)

Clock for write data out to memory (data is
center aligned with the delayed
pll_write_clk).

pll_addr_cmd_clk PLL: C3 Half Set in wizard
(default 270°) Dual-regional

Clock for the address and command out to
memory (address and command is center
aligned with memory clock).

DQS Memory Full 90° Local A continuous running clock from the
memory device for capturing read data.

Notes for Table 6–1:

(1) For memory frequencies >240 MHz.
(2) For memory frequencies <=240 MHz.
(3) For memory frequencies >=240 MHz, for Stratix V devices only.
(4) For parameterizations with interface width >36, pll_mem_clk and pll_write_clk are assigned to use the global network.

Table 6–2. Clocks—Full-Rate Designs (Part 1 of 2)

Clock Source Clock
Rate Phase Clock Network

Type Description

pll_afi_clk PLL: C0 Full 0° Unconstrained Clock for AFI logic.

pll_mem_clk PLL: C1 Full 90°(1)

0°(2) Dual-regional(3) Output clock to memory.

pll_write_clk PLL: C2 Full 180°(1)

-90°(2) Dual-regional(3)
Clock for write data out to memory (data is
center aligned with the delayed
pll_write_clk).

pll_addr_cmd_clk PLL: C3 Full Set in wizard
(default 225°) Dual-regional

Clocks address/command out to memory.
180° gives adress and command center
aligned with memory clock; 225° produces
best overall timing results.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–3
Block Description

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

The UniPHY uses an active-low, asynchronous assert and synchronous de-assert reset
scheme. The global reset signal resets the PLL in the PHY and the rest of the system
waits in reset until after the PLL becomes locked. The number of synchronization
pipeline stages is 4.

Address and Command Datapath
The memory controller controls the read and write addresses and commands to meet
the memory specifications. The PHY simply passes the address and command
received from the memory controller to the memory device. The PHY circuitry is the
same for both address and command.

The address and command datapath outputs connect to the inputs of the address and
command I/Os. An ALTDDIO_OUT megafunction converts the addresses from SDR
to DDR. An ALTDDIO_OUT megafunction with an ALTIOBUF megafunction
delivers a pair of address and command clock to the memory.

Figure 6–2 illustrates the address and command datapath. The controller requires the
registry-and- address-swapping circuitry inside the dotted box only when it is
operating in half-rate mode with odd write latency. In full-rate mode, ddio_address_h
and ddio_addesss_l are the same.

DQS Memory Full 90° Local A continuous running clock from the
memory device for capturing read data.

Notes for Table 6–2:

(1) For memory frequencies >240 MHz.
(2) For memory frequencies <=240 MHz.
(3) For parameterizations with interface width >36, pll_mem_clk and pll_write_clk are assigned to use the global network.

Table 6–2. Clocks—Full-Rate Designs (Part 2 of 2)

Clock Source Clock
Rate Phase Clock Network

Type Description

Figure 6–2. Address and Command Datapath

pll_afi_clk

afi_address

ddio_address_h

ddio_address_l

Only if half-rate and odd write latency

addr_cmd_clk

DDIO

DDIO

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–4 Chapter 6: Functional Description—UniPHY
Block Description

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Write Datapath
The write datapath passes write data from the memory controller to the I/O. The DQ
pins are bidirectional and shared between read and write. The write data valid signal
from the memory controller generates the output enable signal to control the output
buffer. It also generates the dynamic termination control signal, which selects between
series (output mode) and parallel (input mode) termination. An ALT_OCT
megafunction (instantiated in the top-level file) configures the termination values.

Figure 6–3 illustrates the write datapath. The full-rate PLL output clock phy_mem_clk
is sent to a DDIO_OUT cell. The output of ALTDQ_DQS feeds an ALTIOBUF buffer
which creates a pair of pseudodifferential clocks that connects to the memory. In
full-rate mode, only the SDR-DDR portion of the ALTDQ_DQS logic is used; in
half-rate mode, the HDR-SDR circuitry is also required. The
<variation_name>_pin_assignments.tcl script automatically specifies the logic option
that associates all DQ pins to the DQS pin. The Fitter treats the pins as a DQS/DQ pin
group.

Figure 6–3. Write Datapath

DDIO_OUT

DDIO_OUT
 0

DDIO_OUT
 1

DDIO_OUT
 0

DDIO_OUT
 2n-2

DDIO_OUT
 2n-1

DDIO_OUT
 n-1

ALTIOBUF

wdata[0]

wdata[1]

wdata[2]

wdata[3]

wdata[4n-4]

wdata[4n-3]

wdata[4n-2]

wdata[4n-1]

wdata[4n-1:0]

phy_afi_clk

phy_mem_write_clk

phy_mem_clk

gnd

vcc

DQ[0]

DQ[n-1]

DQS

DQSn

ALTDQ_DQS

SDR DDR HDR SDR

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–5
Block Description

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Read Datapath
The read data is captured in the input mode ALTDQ_DQS in the I/O. The captured
data passes to the read datapath. The read datapath synchronizes read data from the
read capture clock domain to the AFI clock domain and converts data from SDR to
HDR (half-rate designs only).

In half-rate designs, the write side of the FIFO buffer should be double the size of the
read side of the FIFO buffer. The read side only reads one entry after the write side has
written into two entries, which effectively converts data from SDR to HDR. In full-rate
designs, the size of the FIFO buffer is the same for both write and read as both sides
operate at the same rate. For half-rate designs, the FIFO operates at half-rate on both
read and write sides, and contains 4 half-rate entries; for full-rate designs, the FIFO
operates at full-rate on both read and write sides, and contains 8 full-rate entries.

Figure 6–4 illustrates the read datapath. The DQS and DQSn clocks and the read data
(DQ) returned from memory are edge-aligned; the DQS and DQSn delay chains shift
the clocks to achieve center alignment.

Figure 6–4. Read Datapath

FIFO

read data

write enable

read_capture_clk

pll_afi_clk

read valid

DDIO_IN

data_high

data_low

DQS Delay Chain

DLLPLL

QKn

QK

DQ[0...n]

calibrated by PHY

ALTDQ_DQS

DDIO_IN_n-1

+

-
o

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–6 Chapter 6: Functional Description—UniPHY
Block Description

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Sequencer
The sequencer is a state machine that processes the calibration algorithm. The
sequencer assumes control of the interface at reset (whether at initial startup or when
the IP is reset) and maintains control throughout the calibration process, relinquishing
control to the memory controller only after successful calibration. Table 6–3 shows the
major states in the sequencer.

Table 6–3. Sequencer States (Part 1 of 2)

State Description

RESET Remain in this state until reset is released.

LOAD_INIT Load any initialization values for simulation purposes.

STABLE Wait until the memory device is stable.

WRITE_ZERO Issue write command to address 0.

WAIT_WRITE_ZERO Write all 0s to address 0.

WRITE_ONE Issue write command to address 1.

WAIT_WRITE_ONE Write all 1s to address 1.

Valid Calibration States

V_READ_ZERO Issue read command to address 0 (expected data is all 0s).

V_READ_NOP This state represents the minimum number of cycles required between 2 back-to-back read
commands. The number of NOP states depends on the burst length.

V_READ_ONE Issue read command to address 1 (expected data is all 1s).

V_WAIT_READ Wait for read valid signal.

V_COMPARE_READ_ZER
O_READ_ONE Parameterizable number of cycles to wait before making the read data comparisons.

V_CHECK_READ_FAIL

When a read fails, the write pointer (in the AFI clock domain) of the valid FIFO buffer is
incremented. The read pointer of the valid FIFO buffer is in the DQS clock domain. The gap
between the read and write pointers is effectively the latency between the time when the PHY
receives the read command and the time valid data is returned to the PHY.

V_ADD_FULL_RATE Advance the read valid FIFO buffer write pointer by an extra full rate cycle.

V_ADD_HALF_RATE Advance the read valid FIFO buffer write pointer by an extra half rate cycle. In full-rate designs,
equivalent to V_ADD_FULL_RATE.

V_READ_FIFO_RESET Reset the read and write pointers of the read data synchronization FIFO buffer.

V_CALIB_DONE Valid calibration is successful.

Latency Calibration States

L_READ_ONE Issue read command to address 1 (expected data is all 1s).

L_WAIT_READ Wait for read valid signal from read datapath. Initial read latency is set to a predefined
maximum value.

L_COMPARE_READ_ONE Check returned read data against expected data. If data is correct, go to L_REDUCE_LATENCY;
otherwise go to L_ADD_MARGIN.

L_REDUCE_LATENCY Reduce the latency counter by 1.

L_READ_FLUSH Read from address 0 (expected data is all 0s), to flush the contents of the read data
resynchronization FIFO buffer.

L_WAIT_READ_FLUSH Wait until the whole FIFO buffer is flushed, then go back to L_READ and try again.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–7
Interfaces

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Interfaces
Figure 6–5 shows the major blocks of the UniPHY and how it interfaces with the
external memory device and the controller.

1 Instantiating the DLL and PLL on the same level as the UniPHY eases DLL and PLL
sharing.

The following interfaces are on the UniPHY top-level file:

■ AFI

■ Memory interface

■ DLL and PLL sharing interface

■ OCT interface

The Memory Interface
For more information on the memory interface, refer to “UniPHY Signals” on
page 6–10.

L_ADD_MARGIN
Increment latency counter by 3 (1 cycle to get the correct data, 2 more cycles of margin for run
time variations). If latency counter value is smaller than predefined ideal condition minimum,
then go to CALIB_FAIL.

CALIB_DONE Calibration is successful.

CALIB_FAIL Calibration is not successful.

Table 6–3. Sequencer States (Part 2 of 2)

State Description

Figure 6–5. UniPHY Interfaces with the Controller and the External Memory

UniPHY

UniPHY Top-Level File

Memory Interface

RUP and RDN

AFI

Reset Interface

PLL and DLL Sharing Interface

DLL

OCT

PLL

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–8 Chapter 6: Functional Description—UniPHY
Interfaces

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

The DLL and PLL Sharing Interface
You can generate the UniPHY memory interface as a master or as a slave, depending
on the setting of the Master for PLL/DLL sharing option on the General Settings tab
of the parameter editor. The top level of a generated UniPHY variant contains both a
PLL and a DLL; the PLL produces a variety of required clock signals derived from the
reference clock, and the DLL produces a delay codeword. The top-level defines the
PLL and DLL output signals as outputs for the master and as inputs for the slave.
When you instantiate master and slave variants into your HDL code, you must
connect the PLL outputs from the master to the clock inputs of the slaves.

1 The master .qip file must appear before the slave .qip file in the Quartus II Settings
File (.qsf).

The UniPHY memory interface requires one PLL and one DLL to produce the clocks
and delay codeword. The PLL and DLL can be shared using a master and slave
scenario. The top-level file defines the PLL and DLL output signals as inputs and
outputs and an additional parameter PLL_DLL_MASTER is also defined. If
PLL_DLL_MASTER is 1, the RTL instantiates the PLL and DLL, which drives the clock
and DLL codeword inputs and outputs. If the parameter is 0, the wires previously
connected to the output of the PLL and DLL are assigned to the clock and DLL
codeword input and outputs. Inputs and outputs are specified based on the setting of
the PLL/DLL sharing option.

1 If you generate a slave IP core, you must modify the timing scripts to allow the timing
analysis to correctly resolve clock names and analyze the IP core. Otherwise the
software issues critical warnings and an incorrect timing report.

To modify the timing script, follow these steps:

1. In a text editor, open the <IP core name>/constraints directory/<IP core
name>_timing.tcl file.

2. Search for the following 2 lines:

■ set master_corename "_MASTER_CORE_"

■ set master_instname "_MASTER_INST_"

3. Replace _MASTER_CORE_ with the core name and _MASTER_INST_ with instance
name of the UniPHY master to which the slave is connected.

1 The instance name is the full path to the instance and is in the <IP core
name>_all_pins.txt file that is automatically generated after the <IP core
name>_pin_assignments.tcl script runs.

4. If the slave component is connected to a user-defined PLL rather than a UniPHY
master, you must manually enter all clock names.

■ Remove the master_corename and master_instname variables with the checks
performed in the eight lines following them.

■ You can use all clock name assignments as templates. For example set
local_pll_afi_clk "mycomponent|mypll|my_afi_clk".

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–9
Interfaces

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

c You must be extremely careful when connecting clock signals to the slave.
Connecting to clocks with frequency or phase different than what the core
expects may result in hardware failures.

The OCT Sharing Interface
By default, the UniPHY IP generates the required OCT control block in the top-level
RTL file for the PHY. If you want, you can instantiate this block elsewhere in your
code and feed the required termination control signals into the IP core by turning off
Master for OCT Control Block on the PHY Settings tab. If you turn off Master for
OCT Control Block, you must instantiate the OCT control block, or use another
UniPHY instance as a master, and ensure that the parallel and series termination
control bus signals are connected to the PHY.

You must create termination Control Block assignments for all calibrated input-only
pins, to designate which OCT control block to use for those pins. If the UniPHY IP is
in OCT Control Block master mode, these assignments are included in the
<variation_name>_pin_assignments.tcl file which must be run after analysis and
synthesis. If the UniPHY IP is not using OCT Control Block master mode the user
must manually create the required assignments to connect the input-only pins to the
relevant OCT control block. For RLDRAM this is just the input clock, all output and
bidirectional pins are hard coded between the pin's I/O buffer and the series and
parallel termination control signals.

Figure 6–6 and Figure 6–7, respectively, show the PHY architecture with and without
Master for OCT Control Block.

Figure 6–6. PHY Architecture with Master for OCT Control Block

UniPHY
OCT

DLL PLL

UniPHY Top-Level File
Memory Interface

RUP and RDN

 PLL and DLL
Sharing Interface

AFI

Reset Interface

OCT
Sharing
Interface

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–10 Chapter 6: Functional Description—UniPHY
UniPHY Signals

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

UniPHY Signals
This section describes the UniPHY signals. Table 6–4 shows the clock and reset
signals.

Figure 6–7. PHY Architecture without Master for OCT Control Block

UniPHY
OCT

DLL PLL

UniPHY Top-Level File
Memory Interface

RUP and RDN

PLL and DLL Sharing Interface

AFI

Reset Interface
Series and Parallel
Termination Control
Buses

Table 6–4. Clock and Reset Signals

 Name Direction Description

pll_ref_clk Input PLL reference clock input.

global_reset_n Input Active low global reset for PLL and all logic in the PHY, which causes a
complete reset of the whole system.

soft_reset_n Input
Holding soft_reset_n low holds the PHY in a reset state. However it
does not reset the PLL, which keeps running. It also holds the
afi_reset_n output low. Mainly for use by SOPC Builder.

reset_request_n Output When the PLL is locked, reset_request_n is high. When the PLL is
out of lock, reset_request_n is low.

seriesterminationcontrol

Input (for OCT
slave)

Required signal for PHY to provide series termination calibration
value. Must be connected to a user-instantiated OCT control block
(alt_oct) or another UniPHY instance that is set to OCT master
mode.

Output(for
OCT master) Unconnected PHY signal, available for sharing with another PHY.

parallelterminationcontrol

Input (for OCT
slave)

Required signal for PHY to provide series termination calibration
value. Must be connected to a user-instantiated OCT control block
(alt_oct) or another UniPHY instance that is set to OCT master mode.

Output (for
OCT master) Unconnected PHY signal, available for sharing with another PHY.

oct_rdn
Input (for OCT
master)

Must connect to calibration resistor tied to GND on the appropriate
RDN pin on the device. (See appropriate device handbook.)

oct_rup
Input (for OCT
master)

Must connect to calibration resistor tied to Vccio on the appropriate
RUP pin on the device. (See appropriate device handbook.)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–11
UniPHY Signals

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Table 6–5 shows the AFI signals.

Table 6–5. AFI Signals

 Name Direction Width Description

Clocks and Reset

afi_clk Output 1 Half-rate or full-rate clock supplied to
controller and system logic.

afi_reset_n Output 1

Reset output on afi_clk clock domain. For
use as asynchronous reset. This signal is
asynchronously asserted and
synchronously de-asserted.

Address and Command

afi_addr Input MEM_ADDRESS_WIDTH ×
AFI_RATIO

Row address.

afi_ba Input MEM_BANK_WIDTH ×
AFI_RATIO

Bank address.

afi_cas_n Input MEM_CONTROL_WIDTH ×
AFI_RATIO

Column address strobe (CAS).

afi_cs_n Input MEM_CHIP_SELECT_
WIDTH × AFI_RATIO Chip select.

afi_ras_n Input MEM_CONTROL_WIDTH ×
AFI_RATIO

Row address strobe (RAS).

afi_we_n Input MEM_CONTROL_WIDTH ×
AFI_RATIO

Write enable.

Write Data

afi_dm Input MEM_DM_WIDTH ×
AFI_RATIO

Data mask input that generates mem_dm.

afi_wdata Input MEM_DQ_WIDTH × 2 ×
AFI_RATIO

Write data input that generates mem_dq.

afi_wdata_valid Input MEM_WRITE_DQS_
WIDTH × AFI_RATIO

Write data valid that generates mem_dq and
mem_dm output enables.

Read Data

afi_rdata Output MEM_DQ_WIDTH × 2 ×
AFI_RATIO

Read data

afi_rdata_en Input MEM_READ_DQS_
WIDTH × AFI_RATIO

Doing read input. Indicates that the memory
controller is currently performing a read
operation.

afi_rdata_valid Output AFI_RATIO

Read data valid indicating valid read data on
afi_rdata, in the byte lanes and
alignments that were indicated on
afi_rdata_en.

Calibration Control and Status

afi_cal_success Output 1 ‘1’ signals that calibration has completed

afi_cal_fail Output 1 ‘1’ signals that calibration has failed

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–12 Chapter 6: Functional Description—UniPHY
UniPHY Signals

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Table 6–6 shows the sideband signals.

Table 6–7 shows the RLDRAM II interface signals.

Table 6–8 shows the top-level signals generated for HardCopy migration.

Table 6–6. Sideband Signals

Signal name Direction Width Description

oct_ctl_rs_value Input OCT_SERIES_TERM_CONTROL_WIDTH
OCT Rs value port for use
with ALTOCT megafunction.

oct_ctl_rt_value Input OCT_PARALLEL_TERM_CONTROL_WIDTH
OCT Rt value port for use
with ALTOCT megafunction.

Table 6–7. RLDRAM II Interface Signals

 Name Direction Width Description

mem_a Output MEM_ADDRESS_WIDTH Address.

mem_ba Output MEM_CONTROL_WIDTH Bank address.

mem_ck, mem_ck_n Output 1 Address and command clock to memory.

mem_dk, mem_dkn Output MEM_WRITE_DQS_
WIDTH

Write clock(s) to memory, 1 clock per DQS
group.

mem_dm Output MEM_DM_WIDTH Data mask.

mem_dq Bidirectional MEM_DQ_WIDTH Input and output data bus.

mem_ref_n Output MEM_CONTROL_WIDTH
Connecting this pin to ground turns off the
DLL inside the device.

mem_qk, mem_qk_n Input MEM_READ_DQS_
WIDTH

Read clock(s) from memory, 1 clock per
DQS group

mem_we_n Output MEM_CONTROL_WIDTH Write enable.

Table 6–8. Top-Level HardCopy Migration Signals (Part 1 of 2)

 Name Direction Description

altsyncram Signals

hc_rom_config_clock Input
Write clock for the ROM loader. This clock
is used as the write clock of the Nios II
code memory.

hc_rom_config_datain Input Data input from external ROM.

hc_rom_config_rom_data_ready Input Asserts to the code memory loader that
the word memory is ready to be loaded.

hc_rom_config_init Input
Triggers the ROM loading process. Should
be asserted for one hc_rom_config_clock
cycle after PLL is locked.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–13
UniPHY Signals

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

hc_rom_config_init_busy Output

When asserted, indicates ROM loading is
in progress. The soft_reset_n signal
should be de-asserted if the ROM data is
not loaded, and also when the ROM is
being loaded. The falling edge of
hc_rom_config_init_busy indicates the
completion of the ROM loading process, at
which time, soft_reset_n can be asserted.

hc_rom_config_rom_rden Output Read-enable signal that connects to the
external ROM.

hc_rom_config_rom_address Output ROM address that connects to the external
ROM.

DLL Reconfiguration Signals

hc_dll_config_dll_offset_ctrl_addnsub Input

Addition and subtraction control port for
the DLL. This port controls if the
delay-offset setting on hc_dll_config_
dll_offset_ctrl_offset is added or
subtracted.

hc_dll_config_offset_ctrl_offset Input

Offset input setting for the DLL. This
setting is a Gray-coded offset that is added
or subtracted from the current value of the
DLL’s delay chain.

hc_dll_config_dll_offset_ctrl_offsetctrlout Output The registered and Gray-coded value of the
current delay-offset setting.

PLL Reconfiguration Signals

hc_pll_config_configupdate Input Control signal to enable PLL
reconfiguration.

hc_pll_config_phasecounterselect Input Specifies the counter select for dynamic
phase adjustment.

hc_pll_config_phasestep Input Specifies the phase step for dynamic
phase shifting.

hc_pll_config_phaseupdown Input Specifies whether the phase shift is up or
down.

hc_pll_config_scanclk Input PLL reconfiguration scan chain clock.

hc_pll_config_scanclkena Input Clock enable port of the
hc_pll_config_scanclk clock.

hc_pll_config_scandata Input Serial input data for the PLL
reconfiguration scan chain.

hc_pll_config_scandataout Output Data output of the serial scan chain.

hc_pll_config_scandone Output

This signal is asserted when the scan
chain write operation is in progress. This
signal is deasserted when the write
operation is complete.

Table 6–8. Top-Level HardCopy Migration Signals (Part 2 of 2)

 Name Direction Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–14 Chapter 6: Functional Description—UniPHY
UniPHY Signals

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Table 6–9 shows the parameters that Table 6–5 through Table 6–7 mention.

Table 6–9. Parameters (Part 1 of 2)

Parameter Name Description

AFI_RATIO
AFI_RATIO is 1 in full-rate designs.

AFI_RATIO is 2 for half-rate designs.

MEM_IF_DQS_WIDTH The number of DQS pins in the interface.

MEM_ADDRESS_WIDTH The address width of the specified memory device.

MEM_BANK_WIDTH The bank width of the specified memory device.

MEM_CHIP_SELECT_WIDTH The chip select width of the specified memory device.

MEM_CONTROL_WIDTH The control width of the specified memory device.

MEM_DM_WIDTH The DM width of the specified memory device.

MEM_DQ_WIDTH The DQ width of the specified memory device.

MEM_READ_DQS_WIDTH The READ DQS width of the specified memory device.

MEM_WRITE_DQS_WIDTH The WRITE DQS width of the specified memory device.

OCT_SERIES_TERM_CONTROL
_WIDTH

—

OCT_PARALLEL_TERM_
CONTROL_WIDTH

—

AFI_ADDRESS_WIDTH The AFI address width, derived from the corresponding memory interface width.

AFI_BANK_WIDTH The AFI bank width, derived from the corresponding memory interface width.

AFI_CHIP_SELECT_WIDTH The AFI chip-select width, derived from the corresponding memory interface width.

AFI_DATA_MASK_WIDTH The AFI data mask width.

AFI_CONTROL_WIDTH The AFI control width, derived from the corresponding memory interface width.

AFI_DATA_WIDTH The AFI data width.

AFI_DQS_WIDTH The AFI DQS width.

DLL_DELAY_CTRL_WIDTH The DLL delay output control width.

NUM_SUBGROUP_PER_READ_DQS A read datapath parameter for timing purposes.

QVLD_EXTRA_FLOP_STAGES A read datapath parameter for timing purposes.

READ_VALID_TIMEOUT_WIDTH A read datapath parameter; calibration fails when the timeout counter expires.

READ_VALID_FIFO_WRITE_ADDR
_WIDTH

A read datapath parameter; the write address width for half-rate clocks.

READ_VALID_FIFO_READ_
ADDR_WIDTH

A read datapath parameter; the read address width for full-rate clocks.

MAX_LATENCY_COUNT_WIDTH A latency calibration parameter; the maximum latency count width.

MAX_READ_LATENCY A latency calibration parameter; the maximum read latency.

READ_FIFO_READ_ADDR_WIDTH —

READ_FIFO_WRITE_ADDR_WIDTH —

MAX_WRITE_LATENCY_
COUNT_WIDTH

A write datapath parameter; the maximum write latency count width.

INIT_COUNT_WIDTH An initailization sequence.

MRSC_COUNT_WIDTH An RLDRAM II-specific initialization parameter.

INIT_NOP_COUNT_WIDTH An RLDRAM II-specific initialization parameter.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–15
UniPHY Signals

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

AFI Signal Names
The RLDRAM II controller with UniPHY uses AFI.

The AFI timing is identical to the DDR3 SDRAM AFI in the Quartus II software
version 9.0. However, some signals have been renamed, some added, and others
removed from the AFI definition. The AFI includes only signals that are part of the
controller-to-PHY interface, clocks, and reset. All signals on the controller-to-PHY
interface have the afi_ prefix to the signal name. Table 6–10 shows the renamed AFI
signals and original (Quartus II software version 9.0) names.

MRS_CONFIGURATION An RLDRAM II-specific initialization parameter.

MRS_BURST_LENGTH An RLDRAM II-specific initialization parameter.

MRS_ADDRESS_MODE An RLDRAM II-specific initialization parameter.

MRS_DLL_RESET An RLDRAM II-specific initialization parameter.

MRS_IMP_MATCHING An RLDRAM II-specific initialization parameter.

MRS_ODT_EN An RLDRAM II-specific initialization parameter.

MRS_BURST_LENGTH An RLDRAM II-specific initialization parameter.

MEM_T_WL An RLDRAM II-specific initialization parameter.

MEM_T_RL An RLDRAM II-specific initialization parameter.

SEQ_BURST_COUNT_WIDTH The burst count width for the sequencer.

VCALIB_COUNT_WIDTH The width of a counter used by the sequencer.

DOUBLE_MEM_DQ_WIDTH —

HALF_AFI_DATA_WIDTH —

CALIB_REG_WIDTH The width of the calibration status register.

NUM_AFI_RESET The number of AFI resets to generate.

Table 6–9. Parameters (Part 2 of 2)

Parameter Name Description

Table 6–10. AFI New Signal Names

AFI Name Old Name

afi_clk ctl_clk

afi_reset_n ctl_reset_n

afi_addr ctl_addr

afi_ba ctl_ba

afi_cke ctl_cke

afi_cs_n ctl_cs_n

afi_ras_n ctl_ras_n

afi_we_n ctl_we_n

afi_cas_n ctl_cas_n

afi_dqs_burst ctl_dqs_burst

afi_wdata_valid ctl_wdata_valid

afi_wdata ctl_wdata

afi_dm ctl_dm

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–16 Chapter 6: Functional Description—UniPHY
PHY-to-Controller Interfaces

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

PHY-to-Controller Interfaces
This section describes the typical modules that are connected to the UniPHY PHY and
the port name prefixes each module uses. This section describes using a custom
controller and describes the AFI.

The AFI standardizes and simplifies the interface between controller and PHY for all
Altera memory designs, thus allowing you to easily interchange your own controller
code with Altera's high-performance controllers. The AFI PHY includes an
administration block that configures the memory for calibration and performs
necessary accesses to mode registers that configure the memory as required (these
calibration processes are different).

For half-rate designs, the address and command signals in the UniPHY are asserted
for one mem_clk cycle (1T addressing), such that there are two input bits per address
and command pin in half-rate designs. If you require a more conservative 2T
addressing, drive both input bits (of the address and command signal) identically in
half-rate designs.

Figure 6–8 shows the half-rate write operation.

afi_wlat ctl_wlat

afi_rdata_en ctl_doing_read

afi_rdata ctl_rdata

afi_mem_clk_disable ctl_mem_clk_disable

afi_cal_success ctl_cal_success

afi_cal_fail ctl_cal_fail

afi_cal_req ctl_cal_req

Table 6–10. AFI New Signal Names

AFI Name Old Name

Figure 6–8. Half-Rate Write with Word-Aligned Data

00 10 11 00

00 11 00

-- ba --dc

afi_clk

afi_dqs_burst

afi_wdata_valid

afi_wdata

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–17
PHY-to-Controller Interfaces

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 6–9 shows a full-rate write.

After calibration completes, the sequencer sends the write latency in number of clock
cycles to the controller.

Figure 6–10 shows full-rate reads; Figure 6–11 shows half-rate reads.

Figure 6–9. Full-Rate Write

-- a --b

afi_clk

afi_dqs_burst

afi_wdata_valid

afi_wdata

Figure 6–10. Full-Rate Reads

afi_rlat = 9

1 2 3 4 5 6 7 8 9

clock

afi_addr

afi_cs_n

afi_rdata_en

mem_dqs

mem_dq

afi_rdata_valid

afi_rdata

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–18 Chapter 6: Functional Description—UniPHY
PHY-to-Controller Interfaces

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 6–12 and Figure 6–13 show writes and reads, where the data is written to and
read from the same address. In each example, afi_rdata and afi_wdata align with
controller clock (afi_clk) cycles. All the data in the bit vector is valid at once.

The AFI has the following conventions:

■ With the AFI, high and low signals are combined in one signal, so for a single
chip-select (afi_cs_n) interface, afi_cs_n[1:0], where location 0 appears on the
memory bus on one mem_clk cycle and location 1 on the next mem_clk cycle.

1 This convention applies for all signals, so for an 9-bit memory interface, the
write data (afi_wdata) signal is afi_wdata[31:0], where the first data on
the DQ pins is afi_wdata[7:0], then afi_wdata[15:8], then
afi_wdata[23:16], then afi_wdata[31:24].

■ Spaced reads and writes have the following definitions:

■ Spaced writes—write commands separated by a gap of one controller clock
(afi_clk) cycle.

■ Spaced reads—read commands separated by a gap of one controller clock
(afi_clk) cycle.

Figure 6–12 through Figure 6–13 assume the following general points:

■ The burst length is four.

■ An 9-bit interface with one chip-select.

■ The data for one controller clock (afi_clk) cycle represents data for two memory
clock (mem_clk) cycles (half-rate interface).

Figure 6–11. Half-Rate Reads

clock

afi_addr

afi_cs_n

afi_rdata_en

mem_dqs

mem_dq

afi_rdata_valid

afi_rdata

AX XA

10

10 01

10 01

DX XD

afi_rlat = 9

1 2 3 4 5 6 7 8 9

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–19
PHY-to-Controller Interfaces

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 6–12. Word-Aligned Writes

Notes to Figure 6–12:

(1) To show the even alignment of afi_cs_n, expand the signal (this convention applies for all other signals).
(2) The afi_dqs_burst must go high one memory clock cycle before afi_wdata_valid. Compare with the word-unaligned case.
(3) The afi_wdata_valid is asserted two afi_wlat controller clock (afi_clk) cycles after chip select (afi_cs_n) is asserted. The afi_wlat

indicates the required write latency in the system. The value is determined during calibration and is dependant upon the relative delays in the
address and command path and the write datapath in both the PHY and the external DDR SDRAM subsystem. The controller must drive afi_cs_n
and then wait afi_wlat (two in this example) afi_clks before driving afi_wdata_valid.

(4) Observe the ordering of write data (afi_wdata). Compare this to data on the mem_dq signal.
(5) In all waveforms a command record is added that combines the memory pins ras_n, cas_n and we_n into the current command that is issued.

This command is registered by the memory when chip select (mem_cs_n) is low. The important commands in the presented waveforms are WR
= write, ACT = activate.

afi_clk

Note 4Note 2Note 1

afi_wlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_dqs_burst

afi_wdata_valid

afi_wdata

afi_addr

Memory
Interface

mem_clk

command
(Note 5)

mem_cs_n

mem_dqs

mem_dq

Note 3

 00 00 11

2

1111 00

1111 00

1111 01 11 01 11

 00 00 10 11 10 11 00

 00 00 11 00 11

 00000000 00000000 03020100 07060504 0b0a0908 0f0e0d0c

 00000000 00000000 0020008

ACTACT WR

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–20 Chapter 6: Functional Description—UniPHY
PHY-to-Controller Interfaces

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 6–13. Word-Aligned Reads

Notes to Figure 6–13:

(1) For AFI, afi_rdata_en is required to be asserted one memory clock cycle before chip select (afi_cs_n) is asserted. In the half-rate afi_clk
domain, this requirement manifests as the controller driving 11 (as opposed to the 01) on afi_rdata_en.

(2) AFI requires that afi_rdata_en is driven for the duration of the read. In this example, it is driven to 11 for two half-rate afi_clks, which equates
to driving to 1, for the four memory clock cycles of this four-beat burst.

(3) The afi_rdata_valid returns 15 (afi_rlat) controller clock (afi_clk) cycles after afi_rdata_en is asserted. Returned is when the
afi_rdata_valid signal is observed at the output of a register within the controller. A controller can use the afi_rlat value to determine when
to register to returned data, but this is unnecessary as the afi_rdata_valid is provided for the controller to use as an enable when registering
read data.

(4) Observe the alignment of returned read data relative to data on the bus.

afi_clk

afi_rlat

afi_ras_n

afi_cas_n

afi_we_n

afi_cs_n

afi_rdata_en

afi_rdata_valid

afi_rdata

afi_ba

afi_addr

afi_dm

Memory
Interface

mem_clk

command

mem_cs_n

mem_dqs

mem_dq

15

11

0

 00 00 11

1111 01 11 01 11

 00 00 11 00 11 00

 00 00 11 00 11 00

FFFFFFFFFFFFFFFF

 00

 0000000 0020008

ACT RD

Note 1
Note 2 Note 2

Note 3
Note 4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Functional Description—UniPHY 6–21
Using a Custom Controller

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Using a Custom Controller
The UniPHY-based memory interface IP cores integrate the PHY and the memory
controller. To replace the Altera high-performance memory controller with a custom
memory controller, perform the following steps:

1. Parameterize and generate your variation of the UniPHY-based memory controller
IP as described in “Getting Started” on page 2–1.

This step creates a top-level HDL file called <variation_name>.v (or
<variation_name>.vhd), and a sub-directory called <variation_name>.

The top-level module instantiates the <variation_name>_<stamp>_controller_phy
module in the <variation_name> subdirectory. The
<variation_name>_<stamp>_controller_phy module instantiates the PHY and the
controller.

1 <stamp> is a unique identifier determined by the MegaWizard Plug-in
Manager, SOPC Builder, or Qsys, during generation.

2. Open the <variation_name>/<variation_name>_<stamp>_controller_phy.sv file.

3. Replace the <variation_name>_<stamp>_alt_rld_controller module with your
custom controller module.

4. Delete the ports of the Altera high-performance memory controller, and add the
top-level ports of your custom controller.

5. Similarily, update the port names in the top-level module in the
<variation_name>.v or <variation_name>.vhd file.

6. Compile and simulate the design to confirm correct operation.

1 Regenerating the UniPHY memory interface IP erases all modifications made to the
HDL files. The parameters you select in the parameter editor are stored in the
top-level <variation_name> module; hence, you must repeat the above steps every
time you regenerate the IP variation.

1 For half-rate controllers, AFI signals are double the bus width of the memory
interface. Half rate controllers have double the width of the signal and run at half the
speed. Hence, the overall bandwidth is maintained. Such double-width signals are
divided into two signals for transmission to the memory interface, with a higher order
bits representing the most-significant bit (MSB) and a lower order bits representing
the least-significant bit (LSB). The LSB is transmitted first, and is followed by the MSB.

Using a Vendor-Specific Memory Model
You can replace the Altera-supplied memory model with a vendor-specific memory
model. In general, you may find vendor-specific models to be standardized, thorough,
and well supported, but sometimes more complex to setup and use.

If you do want to replace the Altera-supplied memory model with a vendor-supplied
memory model, observe the following guidelines:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–22 Chapter 6: Functional Description—UniPHY
Using a Vendor-Specific Memory Model

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

■ Ensure that the vendor-supplied memory model that you have is correct for your
memory devices.

■ Disconnect all signals from the default memory model and reconnect them to the
vendor-supplied memory model.

■ If you intend to run simulation from the Quartus II software, ensure that the .qip
file points to the vendor-supplied memory model.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

7. Functional Description—Example
Top-Level Project

IP generation creates an example top-level project that shows you how to instantiate
and connect the controller.

The example top-level project contains a testbench, which is for use with Verilog HDL
only language simulators such as ModelSim-AE Verilog, and shows simple operation
of the memory interface.

1 For a VHDL-only simulation, use the VHDL IP functional simulation model.

The testbench contains the following blocks:

■ A synthesizable Avalon-MM example driver, which acts as a traffic generator
block and implements a pseudo-random pattern of reads and writes to a
parameterized number of addresses. The driver also monitors the data read from
the memory to ensure it matches the written data and asserts a failure otherwise.

■ An instance of the controller, which interfaces between the Avalon-MM interface
and the AFI.

■ The UniPHY IP, which serves as an interface between the memory controller and
external memory device(s) to perform read and write operations to the memory.

■ A memory model, which acts as a generic model that adheres to the memory
protocol specifications. Memory vendors also provide simulation models for
specific memory components that can be downloaded from their websites. This
block is available in Verilog HDL only.

Figure 7–1 shows the testbench and the example top-level file.

Figure 7–1. Testbench and Example Top-Level File

Example Driver Controller with
UniPHY

Example Top-Level File

Testbench

Wizard-
Generated

 Memory Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–2 Chapter 7: Functional Description—Example Top-Level Project
Example Driver

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Example Driver
The example driver for Avalon-MM memory interfaces generates Avalon-MM traffic
on an Avalon-MM master interface. As the read and write traffic is generated, the
expected read response is stored internally and compared to the read responses as
they arrive. If all reads report their expected response, the pass signal is asserted;
however, if any read responds with unexpected data a fail signal is asserted.

Each operation generated by the driver is a single write or block of writes followed by
a single read or block of reads to the same addresses, which allows the driver to
precisely determine the data that should be expected when the read data is returned
by the memory interface. The driver comprises a traffic generation block, the
Avalon-MM interface and a read comparison block. The traffic generation block
generates addresses and write data, which are then sent out over the Avalon-MM
interface. The read comparison block compares the read data received from the
Avalon-MM interface to the write data from the traffic generator. If at any time the
data received is not the expected data, the read comparison block records the failure,
finishes reading all the data, and then signals that there is a failure and the driver
enters a fail state. If all patterns have been generated and compared successfully, the
driver enters a pass state.

Within the driver, there are the following main states:

■ Generation of individual read and writes

■ Generation of block read and writes

■ The pass state

■ The fail state

Within each of the generation states there are the following substates:

■ Sequential address generation

■ Random address generation

■ Mixed sequential and random address generation

For each of the states and substates, the order and number of operations generated for
each substate is parameterizable—you can decide how many of each address pattern
to generate, or can disable certain patterns entirely if you want. The sequential and
random interleave substate takes in additions to the number of operations to generate.
An additional parameter specifies the ratio of sequential to random addresses to
generate randomly.

Read and Write Generation
The traffic generator block can perform individual or block read and write generation.

Individual Read and Write Generation
During the individual read and write generation stage of the driver, the traffic
generation block generates individual write followed by individual read Avalon-MM
transactions, where the address for the transactions are chosen according to the
specific substate. The width of the Avalon-MM interface is a global parameter for the
driver, but each substate can have a parameterizable range of burst lengths for each
operation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Functional Description—Example Top-Level Project 7–3
Example Driver

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Block Read and Write Generation
During the block read and write generation state of the driver, the traffic generator
block generates a parameterizable number of write operations followed by the same
number of read operations. The specific addresses generated for the blocks are chosen
by the specific substates. The burst length of each block operation can be
parameterized by a range of acceptable burst lengths.

Address and Burst Length Generation
The traffic generator block can perform sequential or random addressing.

Sequential Addressing
The sequential addressing substate defines a traffic pattern where addresses are
chosen in sequential order starting from a user definable address. The number of
operations in this substate is parameterizable.

Random Addressing
The random addressing substate defines a traffic pattern where addresses are chosen
randomly over a parameterizable range. The number of operations in this substate is
parameterizable.

Sequential and Random Interleaved Addressing
The sequential and random interleaved addressing substate defines a traffic pattern
where addresses are chosen to be either sequential or random based on a
parameterizable ratio. The acceptable address range is parameterizable as is the
number of operations to perform in this substate.

Example Driver Signals
Table 7–1 lists the signals used by the example driver.

Table 7–1. Driver Signals (Part 1 of 2)

Signal Width Signal Type

clk

reset_n

avl_ready avl_ready

avl_write_req avl_write_req

avl_read_req avl_read_req

avl_addr 24 avl_addr

avl_size 3 avl_size

avl_wdata 72 avl_wdata

avl_rdata 72 avl_rdata

avl_rdata_valid avl_rdata_valid

pnf_per_bit pnf_per_bit

pnf_per_bit_
persist

pnf_per_bit_persist

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–4 Chapter 7: Functional Description—Example Top-Level Project
Example Driver

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Example Driver Add-Ons
Some optional components that can be useful for verifying aspects of the controller
and PHY operation are generated in conjunction with certain user-specified options.
These add-on components are self-contained, and are not part of the controller or
PHY, nor the example driver.

User Refresh Generator
The user refresh generator sends refresh requests to the memory controller when user
refresh is enabled. The memory controller returns an acknowledgement signal and
then issues the refresh command to the memory device.

The user refresh generator is created when you turn on Enable User Refresh under
Controller Settings on the General Settings tab of the parameter editor. The user
refresh generator is instantiated by example_top_v. and resides in the
example_project subdirectory.

Refresh Monitor
As its name implies, the refresh monitor monitors refresh commands from the
controller and verifies that those commands conform to the necessary refresh timing
parameters.

The refresh monitor is created when you turn on Enable User Refresh under
Controller Settings on the General Settings tab of the parameter editor. The refresh
monitor is instantiated by example_top_tb.v and resides in refresh_monitor.sv in the
rtl_sim subdirectory.

Data Corrupter
The data corrupter intercepts read data in the memory interface bus and introduces
errors to that data to test the error detection function in the memory controller. Both
the rate of error injection and the number of error bits are configurable (although the
per-byte parity protection feature supports only 1 bit error detection).

The data corrupter employs four types of error injection:

■ per-bit data corruption in a single memory burst

■ per-byte corruption in a single memory burst

■ per-bit all-burst corruption

■ per-byte all burst corruption

Throughout the four types of error injection tests, the data corrupter exercises a
walking-one pattern to confirm correctness.

pass pass

fail fail

test_complete test_complete

Table 7–1. Driver Signals (Part 2 of 2)

Signal Width Signal Type

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Functional Description—Example Top-Level Project 7–5
Example Driver

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

The data corrupter is created when you turn on Enable Error Detection Parity under
Controller Settings on the General Settings tab of the parameter editor. The data
corrupter resides in data_corrupter.sv in the rtl_sim subdirectory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–6 Chapter 7: Functional Description—Example Top-Level Project
Example Driver

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

8. Latency

Altera defines read and write latencies in terms of memory clock cycles. These
latencies apply to supported device families (Table 1–2 on page 1–2).

There are two types of latencies that exists while designing with memory
controllers—read and write latencies, which have the following definitions:

■ Read latency—the amount of time it takes for the read data to appear at the local
interface after initiating the read request.

■ Write latency—the amount of time it takes for the write data to appear at the
memory interface after initiating the write request.

1 For a half-rate controller, the local side frequency is half of the memory interface
frequency. For a full-rate controller, the local side frequency is equal to the memory
interface frequency.

Table 8–1 shows the latency in full rate memory clock cycles.
.

Variable Controller Latency
The variable controller latency feature allows you to take advantage of lower latency
for variations designed to run at lower frequency. When deciding whether to vary the
controller latency from the default value of 2, be aware of the following
considerations:

■ Reduced latency can help achieve a reduction in resource usage and clock cycles in
the controller, but might result in lower fMAX.

■ Increased latency can help achieve greater fMAX, but may consume more clock
cycles in the controller and result in increased resource usage.

If you select a latency value that is inappropriate for the target frequency, the system
displays a warning message in the text area at the bottom of the parameter editor.

Table 8–1. Latency (In Full-Rate Memory Clock Cycles) (Note 3)

Rate
Controller

Address and
Command (4)

PHY Address
and Command

Memory
Maximum

Read

PHY Read
Return Round Trip

Round Trip
without
Memory

Full 2 1 3–8 4 10–15 7

Half 4 1 (2)
2 (1) 3–8 7 16–20 (2)

16–18 (1)
12 (2)
13 (1)

Notes to Table 8–1:

(1) Even write latency.
(2) Odd write latency.
(3) Latency is the number of cycles between the first register of the current stage capturing cmd/data, and the first register in the next stage

capturing cmd/data.
(4) Latency shown is best case, for maximum performance specifications. Latency may be higher due to protocol requirements; controller latency

may be lower for slower frequencies.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–2 Chapter 8: Latency

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

You can change the controller latency by altering the value of the Controller Latency
setting in the Controller Settings section of the General Settings tab of the RLDRAM
II Controller with UniPHY parameter editor.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

9. Timing Diagrams

This chapter details the following timing diagrams for a RLDRAM II controller with
the following parameters:

■ ×36

■ Full rate

■ Burst length 2

Figure 9–1 shows back-to-back write to addresses 0 and 1.

1 You can set the avl_size to 0x2 and hold avl_addr constant at 0x0 to perform the
same back-to-back write.

Figure 9–1. Back-to-Back Writes

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–2 Chapter 9: Timing Diagrams

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 9–2 shows back-to-back read from addresses 0 and 1.

1 You can set the avl_size to 0x2 and hold avl_addr constant at 0x0 to perform the
same back-to-back read.

Figure 9–3 shows refresh to bank 0.

Figure 9–2. Back-to-Back Reads

Figure 9–3. Refresh to Bank 0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Timing Diagrams 9–3

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 9–4 shows read-to-write signals.

Figure 9–4. Read-to-Write Signals

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–4 Chapter 9: Timing Diagrams

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Figure 9–5 shows write-to-read signals.

Figure 9–5. Write-to-Read Signals

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

December 2010 Altera Corporation External Memory Interface Handbook Volume 3
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Additional Information

This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Date Version Changes

December 2010 2.1

■ Updated Device Family Support, Features list, and Resource Utilization tables.

■ Updated Design Flows, added new Generated Files information.

■ Added information to HardCopy Migration Design Guidelines.

■ Added new Parameter Settings chapter.

■ Updated Reset and Clock Generation, and Read Datapath information.

■ Added The OCT Sharing Interface.

■ Updated Latency information.

July 2010 2.0 Updated for the Altera Complete Design Suite version 10.0 release.

February 2010 1.2 Corrected typos.

January 2010 1.1 Updated features.

November 2009 1.0 First published.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Info–2 Chapter :
Typographic Conventions

External Memory Interface Handbook Volume 3 December 2010 Altera Corporation
Section IV. RLDRAM II Controller with UniPHY IP User Guide

Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

