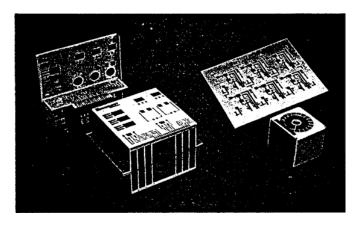


PHOTOPOSITIF ALUMINIUM PCB


REF AAT10 20

August 2003

A NEW CONCEPT IN THERMAL MANAGEMENT.

Aluminum Base, Copper Clad Substrate

P.A PCB* is a thermal control substrate designed to manage heat created by power components. $P \cdot A$ PCB* offers several unique features for design engineers. Components can be soldered directly to the etched copper Layer of $P \cdot A$ PCB* and they're isolated by the thermally conductive dielectric layer. Also, heat generated by power components is automatically transferred through this layer to the base plate of- $P \cdot A$ $P \cdot C$ $B \cdot M$. As a result, the thermal resistance of the circuit board is significantly reduced.

$P.A \ PCB*$ is a substrate, a heat sink and a printed circuit material.

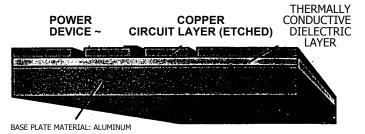
Applications include:

- . Replacement for heat sinks and other hardware
- . Replacement for fragile ceramic substrates
- . Replacement for printed circuit board material
- . Surface mount -layouts
- Custom material combinations and applications requiring specific thermal, dielectric and physical properties
- Smart power packages where power and logic are combined

PRODUCT DATA. STANDARD CONFIGURATION

Circuit Layer - Copper Foil - .0014 in. printed circuit

grade


Dielectric - .003 in.

Base plate - .062 in. Aluminum (alloy 6061)

* P.A PCB Photopositif Aluminium PCB.

STANDARD CONSTRUCTION

P.A PCB*, s a three layered substrate. The base plate (usually copper or aluminum) is bonded with a polymer based, thermally conductive dielectric to a circuit layer (either copper or aluminum clad copper foil).

TYPICAL PROPERTIES

Dielectric Strength 4000 Volts min.

Dielectric Constant 5-6

Thermal Conductivity 3 Watt Meter ^{-1°} K⁻¹ Surface Resistivity 1x10⁹ Megohms

Process Temperature 350 °C Continuous Use 180 °C

Temperature

THERMAL RESISTANCE

Case #1 TO-220 transistor mounted to an etched pad. 4" x 5" panel size.

Temperature measurement junction and pane!
Operating power 25 watts, DC
Thermal resistance 1.0°C/watt

(⊖, junction to sink)

Case #2. A surface mount power transistor (MJD 3055) mounted to an etched pad. 1" x 3" panel size.

Temperature measurement Operating power
Thermal resistance

junction and panel
25 watts, DC

1.8"C/watt
(⊖, junction to sink)

Case #3. A 200 x 200 silicon die with a resistor network covering

70% of its surface is soldered directly to an etched pad. Junction temperature was sensed using diodes surrounding the resistor network. 4" x 5" panel size.

Temperature measurement - junction and panel
Operating power 20 watts, DC
Thermal resistance 1.0°CJwatt

(⊖, junction to sink)

THERMAL EXPANSION PEEL STRENGTH TESTING **COEFFICIENTS* Dielectric-Copper Foil** cm/cm°C $(x10^{-6})$ Peel Strength (Conductor width) Epoxy-Glass PCB Material......10-30 Thermal Clad (Aluminum)......25 10 minutes at 550°F(Solder Bath).....7 lbs/in Thermal Clad (Copper).....18 Thermal Clad (CIC)......8 Alumina(99.5%)......7

OPERATING TEMPERATURE VS. POWER DISSIPATED *Transistor junction temperature (Data obtained using DPAKtm , 3055 Transistors)

Beryllia(99.5%)......8

*Approximate values

This table shows how transistors run cooler on Thermal Clad compared with transistors mounted on epoxy-glass printed circuit board material.

