CSM-12C32

Educational Module for Freescale MC9S12C32

USER GUIDE

Email: www.axman.com

Support: support@axman.com

CONTENTS

CAUTIONARY NOTES	4
TERMINOLOGY	4
FEATURES	5
REFERENCES	6
INTRODUCTION	6
GETTING STARTED	6
OPERATION	7
POWER	
PWR	
CONNECTOR J1	7
PWR_SEL JUMPER	
RESET SWITCH	
LOW-VOLTAGE DETECT	
TIMING	
COMMUNICATIONS	
COM CONNECTOR	
CONNECTOR J1	_
USER OPTIONS	
SWITCHES	
<i>LED'S</i>	
DEVELOPMENT SUPPORT	
ASCII MONITOR OPERATION	
ASCII MONITOR MEMORY MAP	
MONITOR COMMANDS	
INTERRUPT SUPPORT	
INTERRUPT VECTOR TABLE	
SERIAL MONITOR OPERATION	
SERIAL MONITOR MEMORY MAP	
RDM PORT HEADER	1.1

FIGURES

Figure 1: PWR_SEL	9
TABLES	
Table 1: Serial COM Signals	9
Table 2: User Option Jumper Settings	10
Table 4: Monitor Commands	11
Table 5: Monitor Memory Map	11
Table 6: MON12 Interrupt Vector Table	12
Table 7: Serial Monitor Memory Map	14

REVISION

February 22, 2005	В	Update initial release
April 7, 2005	С	Updated monitor information. Differentiated between serial monitor and debug monitor. Updated document format. Removed BOM and Schematic.
June 8, 2005	D	Updated installed monitor information. Added BOM to appendix
June 8, 2006	E	Removed BOM and Mechanical Dwg. Updated board part number
August 1, 2008	F	Corrections to cut-trace configuration. Update formatting

CAUTIONARY NOTES

- 1) Electrostatic Discharge (ESD) prevention measures should be used when handling this product. ESD damage is not a warranty repair item.
- Axiom Manufacturing does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under patent rights or the rights of others.
- 3) EMC Information on the CSM12C32 module:
 - a) This product as shipped from the factory with associated power supplies and cables, has been verified to meet with requirements of CE and the FCC as a **CLASS B** product.
 - b) This product is designed and intended for use as a development platform for hardware or software in an educational or professional laboratory.
 - c) In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate prevention measures.
 - d) Attaching additional wiring to this product or modifying the products operation from the factory default as shipped may effect its performance and cause interference with nearby electronic equipment. If such interference is detected, suitable mitigating measures should be taken.

TERMINOLOGY

This development module utilizes option select jumpers to configure default board operation. Terminology for application of the option jumpers is as follows:

Jumper – a plastic shunt that connects 2 terminals electrically

Jumper on, in, or installed = jumper is a plastic shunt that fits across 2 pins and the shunt is installed so that the 2 pins are connected with the shunt.

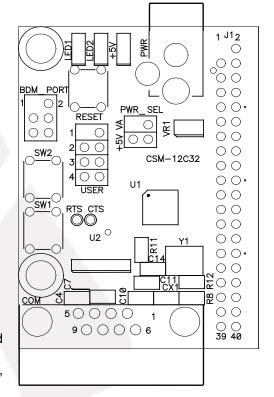
Jumper off, out, or idle = jumper or shunt is installed so that only 1 pin holds the shunt, no 2 pins are connected, or jumper is removed. It is recommended that the jumpers be placed idle by installing on 1 pin so they will not be lost.

Cut-Trace – a circuit trace connection between component pads. The circuit trace may be cut using a knife to break the default connection. To reconnect the circuit, simply install a suitably sized 0-ohm resistor or attach a wire across the pads.

Signal names followed by an asterisk (*) denote active-low signals.

FEATURES

The CSM12C32 is an educational module for the FREESCALE MC9S12C32 microcontroller. The included wall plug, DB9 serial cable, sample software tools, examples, and debug monitor makes application development quick and easy. A background DEBUG port is provided for development tool use and is compatible with HCS12 BDM interface cables and software. A monitor has also been preloaded into MCU Flash to provide the user with a simple development platform. The monitor is accessible through the COM connector. A 40-pin connector allows the CSM12C32 module to be connected to an expanded evaluation environment such as the Axiom Manufacturing, MCU Project Board - 2.


Features:

- ♦ MC9S12C32 MCU, 48 QFP
 - ♦ 32K Byte Flash EEPROM
 - ♦ 2K Bytes RAM
 - ♦ 31 I/O lines
 - ◆ Timer/PWM
 - ♦ SCI and SPI Communications Ports
 - ♦ Key Wake-up Port
 - ♦ BDM DEBUG Port
 - ◆ CAN 2.0 Module
 - ♦ Analog Comparator
 - ♦ 8 MHz Internal Bus Operation Default
 - ♦ 25 MHz Bus Operation using internal PLL
 - ♦ +3.3VDC to +5VDC operation
- 40 pin connector provides access to most MCU I/O signals
- Power Input Selection Jumper
- On-board, regulated +5V power supply
- Optional power input from Connector J1
- Optional power output through Connector J1
- ♦ 16 MHz Ceramic Resonator
- ♦ RS-232 Serial Port w/ DB9 Connector
- 8-Ch, 10-bit, Analog Comparator with full rail-to-rail operation and external trigger capability
- 8-Channel, 16-bit Timer with Input Capture, Output Compare, and PWM capabilities
- User Components Provided
 - ♦ 3 Push Button Switches: 2 User, RESET
 - ♦ 3 LED Indicators: 2 User, VDD
- Jumpers
 - ♦ Disable User Functions
 - Power Select
- Connectors
 - ◆ 40-pin MCU I/O Connector
 - ♦ 2.0mm Barrel Connector Power Input
 - DEBUG BDM Connector
 - ◆ DB9 Communications Connector
- ◆ Supplied with DB9 Serial Cable, Documentation (CD), Manual, and Wall plug type power supply.

Specifications:

Module Size 2.2" x 1.6"

Power Input: +9VDC @ 200 mA typical, +6 to +16VDC range

REFERENCES

Reference documents are provided on the support CD in Acrobat Reader format. More information can be found in the Application Notes section of the Freescale Web site.

CSM12C32_SCH_B.pdf CSM12C32_UG_C.pdf 9S12C32DGV1.pdf 9S12C32_ZIP.zip Module_QuickStart.pdf AN2548.pdf CSM12C32 Module Schematic Rev B CSM12C32 User Guide, Rev C (this document) MC9S12C32 Device User Guide Zip file containing Device Block User Guides Educational Module Quick Start Guide Serial Monitor Program for HCS12 MCU's

INTRODUCTION

Before using this module, the user should be familiar with the hardware and software operation of the target MCU. Refer to the MC9S12C32 User Manual and MC9S12C32 Reference Manual for details on MCU operation. The module's purpose is to promote the features of the MC9S12C32 and to assist the user in quickly developing an application in a known working environment. Users should be familiar with memory mapping, memory types, and embedded software design for quick, successful, application development.

The CSM12C32 Educational Module is a fully assembled, fully functional module supporting Freescale MC9S12C32 microcontroller. The module comes with a serial cable, power supply, and an embedded monitor for stand-alone operation. Support software for this module is provided for Windows 95/98/NT/2000/XP operating systems.

Application development may be performed by using the embedded monitor, or any compatible BDM cable with supporting host software. The embedded monitor provides an effective, low cost, debug method. Note that when a BDM cable is used for debugging, the BDM pod should be powered from an external supply.

GETTING STARTED

Please refer to the Educational Module Quick Start Guide to quickly setup the hardware and install the AxIDE terminal interface.

OPERATION

The CSM12C32 module provides input and output features designed to assist embedded application development. Access to MCU port signals is available through module the connector J1. This connector may also be used to input power to the module or to output power to attached modules. RS-232 communications signals may also be input through connector J1. Care must be exercised when using the J1 to power the module, as only regulated voltage in the range of +3.3V to +5V should be supplied to this connection. The on-board regulator provides a fixed +5V voltage to the module.

Five option jumpers and 3 cut-traces control module operation. Enabling a jumper option requires installing a shunt across the associated header pins. Removing the shunt disables the associated option. An option enabled by a cut-trace can be disabled by removing the circuit trace between the cut-trace component pads. Use a sharp knife to cut the embedded circuit trace. Be careful not to damage adjacent circuitry. To re-enable the option, simply install a 1206 sized 0-ohm resistor or piece of wire across the cut-trace component pads.

Power

Power is supplied to the module through a 2.0mm barrel connector at location PWR for standalone operation. The module may also be powered through connector J1 when connected to the MCU Project Board. Power may be sourced off-module through connector J1 to external circuitry. Power routing on the module is determined by the PWR_SEL jumper.

PWR

The PWR connector accepts a 2.1mm, center-positive, barrel plug that allows the module to be powered from a wall-plug transformer or from a desktop power supply. Input voltage should be limited to between +7V and +20V. Input voltage of +9VDC is typical. This input supplies the on-board +5V regulator that powers the module.

Connector J1

Power may be supplied to the module through the pins J1-1 and J1-2. Use of this option requires a regulated voltage input limited to the range of +3.3VDC to +5VDC. This input is connected directly to the module power and ground planes. Care should be exercised not to overdrive this input. Use of connector J1 to supply +3.3V to the module requires disabling the voltage supervisor (LV1) by opening cut-trace CT1. See the Low-Voltage Detect section below. To re-enable the low-voltage supervisor, install a 1206 sized 0-ohm resistor at CT1.

Connector J1 may also be used to source +5V power from the on-board regulator to external modules attached to connector J1. The PWR_SEL option header determines how power is routed to the module.

PWR_SEL Jumper

The PWR_SEL jumper is a 4-position option header that configures power routing on the CSM12C32 module. The module may be powered by an external transformer connected to the PWR connector or through connector J1. The module may also source power to auxiliary modules connected to the connector J1. Damage may occur if the J1 power input pins are over-driven. Refer to Figure 1 below to determine correct PWR_SEL jumper setting.

Figure 1: PWR_SEL

Source power input from barrel connector PWR.

Source power input from connector J1.

Source power from barrel connector PWR and supply power to external circuitry connected to J1.

Reset Switch

The RESET switch provides an asynchronous reset input to the MCU. Pressing the RESET switch produces a low-voltage level on the RESET input to the MCU. The low-voltage supervisor (LV1) holds the RESET line low for approximately 150 ms after the pushbutton is released.

Low-Voltage Detect

A DS1813 (LV1) provides POR, low-voltage detect, and pushbutton reset services for the module. At power-on, LV1 holds the MCU in reset for 150 ms after $V_{\rm CC}$ reaches approximately 4.35V. During normal operation, LV1 asserts RESET when $V_{\rm CC}$ falls below 4.35V and holds RESET true for 150 ms after VCC returns to normal. The push-button operation is described in the paragraph above. Use of connector J1 to supply +3.3V to the module requires disabling LV1.

LV1 may be disabled by opening the cut-trace CT1. Simply remove the circuit trace between the cut-trace pads to open the circuit. To restore the circuit functionality, install a 1206 size, 0-ohm, resistor or a short piece of wire across the cut-trace pads.

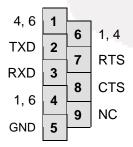
Timing

A ceramic resonator (Y1) provides a 16.0 MHz base operating frequency to the MCU. This supports a default 8.0 MHz internal operating frequency. Higher frequencies are possible using the embedded PLL. The resonator output is routed to the MCU only and is not available at the MCU Port connector (J1). The MCU ECLK output is available to the user at connector J1 if enabled.

Communications

The CSM12C32 module provides a single RS-232 communications port. An RS-232 transceiver (U2) provides RS-232 signal level to TTL/CMOS logic level translation. RS232 signals TXD and RXD are routed between the transceiver and the MCU. These signals are also routed to connector J1. RS-232 communication signals input on J1 must be TTL/CMOS logic levels; no translation support is provided through this path. The transceiver output may also be driven off-module if the signals are suitably buffered. As added development support, hardware flow control signals RTS and CTS are available on the logic side of U2. These signals are routed to vias located near the transceiver (U2). RTS has been biased properly to support 2-wire RS-232 communications.

Use of the J1 connector to input RS-232 signals requires disabling the on-board RS-232 transceiver. Otherwise, signal corruption may occur. Disabling the on-board transceiver is accomplished by opening cut-traces CT4, and CT5. Simply remove the circuit trace between the cut-trace pads to open the circuit. To restore the circuit functionality, install a 1206 size, 0-ohm, resistor or a short piece of wire across the cut-trace pads.


Table 1: Serial COM Signals

COM Signal	MCU Port	Connector	Disable
TXD	PS1/TXD	J1-5	CT5
RXD	PS0/RXD	J1-7	CT4

COM Connector

A standard 9-pin Dsub connector provides external connections for the COM port. The COM port is configured as a DCE device. Component U2 provides RS-232 translation services. Figure 2 below shows the DB9 connector pin-out.

Figure 2: COM Connector

Female DB9 connector that interfaces to the DCE serial port via an RS232 transceiver. It provides simple 2-wire asynchronous serial communications without flow control. A straight-through serial cable may be connected to a DTE device such a PC

Pins 1, 4, and 6 are connected together.

Connector J1

Connector J1 provides access to CSM12C32 I/O port signals.

Figure 3: MCU_PORT Connector

V_x	1	2	PE1/IRQ*
GND	3	4	RESET*
PS1/TXD	5	6	MODC/BKGD
PS0/RXD	7	8	NC
PP5/KWP5	9	10	NC
PE0/XIRQ*	11	12	NC
PT0/PW0/IOC0	13	14	NC
PT1/PW1/IOC1	15	16	NC
PM4/MOSI	17	18	PAD00/AN00
PM2/MISO	19	20	PAD01/AN01
PM5/SCK	21	22	PB4
PM3/SS*	23	24	PA0
PE4/ELCK	25	26	PM1/TXCAN
PE7/XCLKS	27	28	PM0/RXCAN
PAD02/AN02	29	30	PT2/PW2/IOC2
PAD03/AN03	31	32	PT3/PW3/IOC3
PAD04/AN04	33	34	PT4/PW04/IOC4
PAD05/AN05	35	36	PT5/IOC5
PAD06/AN06	37	38	PT6/IOC6
PAD07/AN07	39	40	PT7/IOC7

Default Signal Assignments			
MCU PORT	Signal	Disable	
PS1/TXD	COM1 TXD	CT-5	
PS0/RXD	COM1 RXD	CT-4	
PE1/IRQ*	SW1	User1	
PP5/KWP5	SW2	User2	
PA0	LED1	User3	
PB4	LED2	User4	

Note: Default signal assignment should be disabled to use the signal at connector J1

User Options

User options include 2 LED's, and 2 pushbutton switches. Each user option may be enabled individually using the USER option header. When the appropriate USER option jumper is installed, the associated user option is enabled. Removing a jumper disables the associated user option.

Table 2: User Option Jumper Settings

Jumper	On	Off	MCU Signal
User 1	Enable SW1	Disable SW1	PE0/XIRQ*
User 2	Enable SW2	Disable SW2	PP5 /KWP5
User 3	Enable LED1	Disable LED1	PA0
User 4	Enable LED2	Disable LED2	PB4

Switches

Two push button switches provide momentary, active low, input to the MCU for user applications. Pressing a switch provides a momentary low logic level input to the MCU. SW1 and SW2 provide input to MCUI/O ports PE0 and PP5 respectively.

LED's

Two LED's provide active-low, visual output for user applications. A low voltage level driven out on the appropriate MCU port causes the LED to light. MCU ports PA0 and PB4 drive LED1 and LED2 respectively.

DEVELOPMENT SUPPORT

The CSM12C32 ships from the factory with a serial monitor installed in FLASH. An ASCII monitor is also installed to provide quick and easy debug access to the user. The text monitor is available out of RESET. The serial monitor is available by pressing and holding SW1 as the module exits RESET. In the discussion below, the terms text and ASCII are used interchangeably.

ASCII Monitor Operation

The debug monitor provides a simple application development platform for developing application code. The debug monitor allows the user to quickly and easily develop and debug RAM based application code.

The debug monitor is accessible through the COM port using an ASCII terminal program such as HyperTerminal or AxIDE. The terminal should be configured for 9600, 8, N, 1 with no flow-control. The monitor relocates the hardware interrupt vector table from 0xFF8A:0xFFFF to 0X0F8A:0x0FFF. Table 3 below shows the memory map applied when the Monitor is active. The vectors remain in the same order as the default hardware table. The Reset vector is reserved; user should use autostart to start applications from reset.

ASCII Monitor Memory Map

Table 3: Monitor Memory Map

\$0000 - \$03FF	Registers	1K bytes
	Reserved	
\$0800 - \$0DFF	Internal RAM.	1.5K bytes
\$0E00 - \$0F8B	Monitor Reserved	F10 buton
\$0F8A - \$0FFF	Relocated Interrupt Vector Table	512 bytes
	Reserved	
\$8000 - \$BFFF	User Program Memory	16K bytes
\$C000 - \$FFFF	Protected Monitor Space	16K bytes

Monitor Commands

Table 4: Monitor Commands

BF <startaddress> <endaddress> [<data>]</data></endaddress></startaddress>	Block Fill memory range with data	
BR [<address>]</address>	Set/Display user breakpoints	
CALL [<address>]</address>	Call user subroutine at <address></address>	

GO [<address>]</address>	Begin/continue execution of user code	
HELP	Display the Mon12 command summary	
LOAD [P]	Load S-Records into memory, P = Paged S2	
MD <startaddress> [<endaddress>]</endaddress></startaddress>	Memory Display Bytes	
MM <address></address>	Modify Memory Bytes (8 bit values)	
MW <address></address>	Modify memory Words (16 bit values)	
MOVE <startaddress> <endaddress></endaddress></startaddress>	Move a block of memory	
<destaddress></destaddress>		
RD	Display all CPU registers	
OFFSET – [arg]	Offset for download	
Proceed	Continue program execution	
RM	Modify CPU Register Contents	
STOPAT <address></address>	Trace until address	
T [<count>]</count>	Trace <count> instructions</count>	

NOTE: Items in Italics are not implemented at this time.

Interrupt Support

All interrupt services under are provided through the relocated vector table, see Table 5 below. Each location in the table is initialized to a value of \$0000 to cause the trap of an unscheduled interrupt. Any nonzero value will allow the interrupt to proceed to the user's service routine that should be located at the address indicated. The interrupt service delay is +21 cycles over the standard interrupt service.

To use vectors specified in the table, the user must insert the address of the interrupt service routine during software initialization into the ram interrupt table. For an example, for the IRQ vector, the following is performed:

Example: IRQ Service routine label = IRQ_SRV

Ram Vector Table address is defined in table below, IRQ vector definition:

VIRQ EQU \$0FF2; define ram table vector location

Place IRQ service routine address in the table:

MOVW #IRQ_SRV,VIRQ

This vector initialization will remain in effect until a RESET is invoked.

Interrupt Vector Table

Table 5: MON12 Interrupt Vector Table

Ram Interrupt Vector Address	MCU Interrupt Vector Address	TRAP code	Vector Source
0F8A	FF8A	02	LVI
0F8C	FF8C	04	PWME
0F8E	FF8E	06	PTPI
0F90	FF90	08	C4TX

0F92	FF92	0A	C4RX
0F94	FF94	OC OC	C4ERR
0F96	FF96	0E	C4WU
0F98	FF98	10	C3TX
0F9A	FF9A	12	C3RX
0F9C	FF9C	14	C3ERR
	FF9E	16	
0F9E			C3WU
0FA0	FFA0	18	C2TX
0FA2	FFA2	1A	C2RX
0FA4	FFA4	1C	C2ERR
0FA6	FFA6	1E	C2WU
0FA8	FFA8	20	C1TX
0FAA	FFAA	22	C1RX
0FAC	FFAC	24	C1ERR
0FAE	FFAE	26	C1WU
0FB0	FFB0	28	C0TX
0FB2	FFB2	2A	C0RX
0FB4	FFB4	2C	C0ERR
0FB6	FFB6	2E	COWU
0FB8	FFB8	30	FEPRG
0FBA	FFBA	32	EEPRG
0FBC	FFBC	34	SPI2
0FBE	FFBE	36	SPI1
0FC0	FFC0	38	I2C
0FC2	FFC2	3A	BDLC
0FC4	FFC4	3C	CRGC
0FC6	FFC6	3E	CRGL
0FC8	FFC8	40	PACBO
0FCA	FFCA	42	MCNT
0FCC	FFCC	44	PTHI
0FCE	FFCE	46	PTJI
0FD0	FFD0	48	ADC1
0FD2	FFD2	4A	ADC0
0FD4	FFD4	4C	SCI1
0FD6	FFD6	4E	SCI0
0FD8	FFD8	50	SPI0
0FDA	FFDA	52	PACAI
0FDC	FFDC	54	PACAO
0FDE	FFDE	56	TOF
0FE0			
	FFE0	58	TC7
0FE2	FFE2	5A	TC6
0FE4	FFE4	5C	TC5
0FE6	FFE6	5E	TC4
0FE8	FFE8	60	TC3
OFEA	FFEA	62	TC2
OFEC	FFEC	64	TC1
0FEE	FFEE	66	TC0
0FF0	FFF0	68	RTI
0FF2	FFF2	6A	IRQ
0FF4	FFF4	6C	XIRQ
0FF6	FFF6	6E	SWI
0FF8	FFF8	70	TRAP
0FFA	FFFA	72	COP
0FFC	FFFC	74	CLM
0FFE	FFFE	76	RESERVED

Serial Monitor Operation

A serial binary monitor is loaded in the MCU internal flash memory. Press and hold SW1 while pressing the RESET button or applying power. This section provides a brief description of this serial monitor operation. Refer to application note AN2548 for complete details on the serial monitor operation. This application note may be found on the Support CD received with the module or from the Freescale web site.

Serial Monitor Memory Map

Table 6: Serial Monitor Memory Map

0x0000 - 0x03FF	Registers	1K bytes
	Reserved	
0x3800 - 0x3FFF	Internal RAM (Relocated)	2K bytes
UXSFFF	Reserved	
0x8000 - 0xBFFF	Fixed Flash EEPROM Block 1 (visible at RESET)	16K bytes
0xC000 - 0xF77F	Fixed Flash EEPROM Block 2	13.8K bytes
0xF780 – 0xF7FF	User Vectors (Relocated) User Reset Vector F7FE:F7FF	2.12K bytes
0xF800 – 0xFFFF	Vectors (Protected)	

NOTE: Although the monitor does not support external memory, the user can enable external memory accesses in the unfilled areas of the memory map.

The 2K-byte serial monitor program provides an RS-232 serial interface to a host PC. Serial data rate is 115.2K bps. The monitor is compatible with Metrowerks CodeWarrior Development Studio and other serial monitor interface IDE's. The serial monitor is not compatible with ASCII interface programs such as HyperTerm or AxIDE. The monitor supports 23 primitive commands to control the target MCU. To allow a user to specify the address of each interrupt service routine, this monitor redirects interrupt vectors to an unprotected portion of FLASH.

To boot to the serial monitor, the user simply pressed and holds SW1 while pressing the RESET switch or applying power. The status of SW1 is read only during the rising edge of RESET. To load user application on start-up, the user is responsible for programming the pseudo-reset vector (0xF7FE:0xF7FF). Pressing SW1 after the MCU exits reset will not access the serial monitor. After exiting reset, pressing SW1 has effect as defined in the user application.

BDM_PORT Header

BDM access is gained through the BDM_PORT header. This is a 6-pin header that allows connection of a compatible HCS12 BDM cable. Refer to the documentation for the specific

BDM cable used for details on its use. The figure below shows the pin-out for the DEBUG header.

Figure 4: BDM_PORT

MODC/BKGD	1	2	GND
	3	4	RESET*
	5	6	VDD

See the HC12 Reference Manual for complete DEBUG documentation

