Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for H8SX/1622

User's Manual
RENESAS SINGLE-CHIP MICROCOMPUTER
H8SX FAMILY

Table of Contents

Chapter 1. Preface	3
Chapter 2. Purpose	4
Chapter 3. Power Supply	5
3.1. Requirements	5
3.2. Power – Up Behaviour	5
Chapter 4. Board Layout	6
4.1. Component Layout	6
4.2. Board Dimensions	7
Chapter 5. Block Diagram	8
Chapter 6. User Circuitry	9
6.1. Switches	9
6.2. LEDs	9
6.3. Potentiometer	9
6.4. Serial port	9
6.5. Debug LCD Module	10
6.6. Option Links	11
6.7. Oscillator Sources	18
6.8. Reset Circuit	18
6.9. Sigma Delta ADC	18
Chapter 7. Modes	19
7.1. Boot mode	19
7.2. User mode	19
7.3. MCU Extension mode (ROM Active)	19
7.4. Single chip mode	19
Chapter 8. Programming Methods	20
Chapter 9. Headers	21
9.1. Microcontroller Headers	21
9.2. Application Headers	25
Chapter 10. Code Development	28
10.1. Overview	28
10.2. Compiler Restrictions	28
10.3. Mode Support	28
10.4. Breakpoint Support	28
10.5. Memory Map	29
Chapter 11. Component Placement	30
Chapter 12. Additional Information	32

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2007. All rights reserved.

© Renesas Technology Corporation. 2007. All rights reserved.

© Renesas Solutions Corporation. 2007. All rights reserved.

Website: http://www.eu.renesas.com/

Glossary

CPU	Central Processing Unit	HEW	High-performance Embedded Workshop
LED	Light Emitting Diode	RSK	Renesas Starter Kit
PC	Program Counter	E10A	On-chip debugger module

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer.
- User or Example Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK operates from a 5V power supply. The Sigma Delta ADC part of RSK operates from a separate 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E10A debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The RSK is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power – Up Behaviour

When the RSK is purchased the RSK board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows top layer component layout of the board.

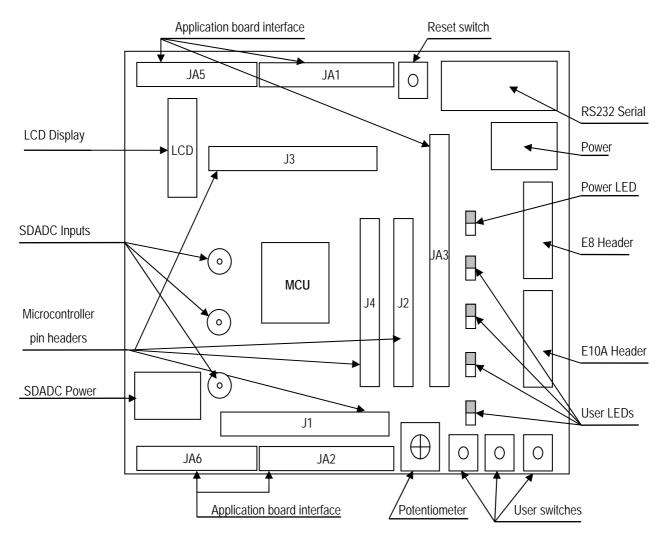


Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

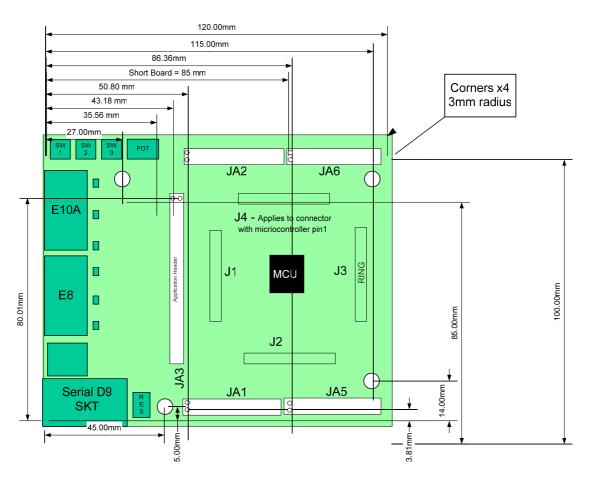


Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

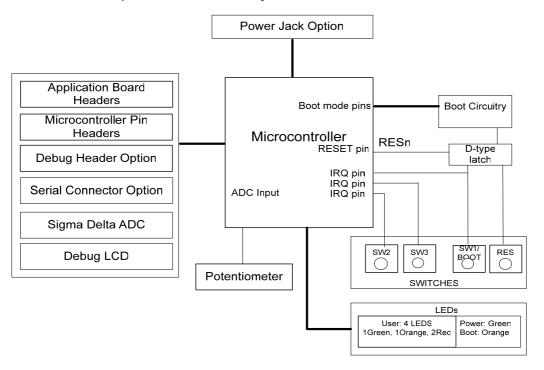


Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

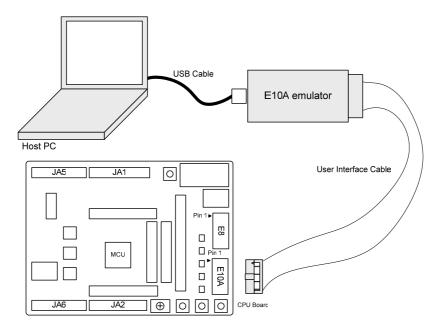


Figure 5-2: RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the RSK microcontroller is reset.	RESn, Pin91
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ4n , Pin 124
	The switch is also used in conjunction with the RES switch to place the device in	(Port 5, pin 4)
	BOOT mode when not using the E10A debugger.	
SW2*	Connects to an IRQ line for user controls.	IRQ5n, Pin 126
		(Port 5, pin 5)
SW3*	Connects to the ADC trigger input. Option link allows connection to IRQ line.	IRQ3n_ADTRGn,
	The option is a pair of 0R links. For more details on option links, please refer to	Pin 66
	Sec 6.6.	(Port 1, pin 3)

Table 6-1: Switch Functions

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port Pin	Microcontroller
shown on silkscreen)		function	Pin Number
LED0	Green	Port A.0	17
LED1	Orange	Port A.2	19
LED2	Red	Port 1.7	60
LED3	Red	Port 1.6	62

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to AN0 (P5.0) of the microcontroller. This may be used to vary the input analogue voltage value to this pin between AVCC and Ground.

6.4. Serial port

Serial port SCI2 is connected to the standard RS232 header. Serial ports SCI4 can optionally be connected to the RS232 header by fitting option resistors. The connections to be fitted are listed in the Table 6-3.

^{*}Refer to schematic for detailed connectivity information.

Description	Function	Circuit Net	Device	Fit for RS232	Remove for
		Name	Pin		RS232
SCI2	Spare Serial Port	TxD2	69	R31	R37, R32
SCI2	Spare Serial Port	RxD2	68	R30	R36, R33
SCI4	Programming serial port	TxD4	107	R37	R6, R31, R32
SCI4	Programming serial port	RxD4	108	R36	R5, R30, R33

Table 6-3: Serial Port settings

The SCI2 port is also available on J2 and JA2. The SCI3 port is available on JA6.

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector LCD. This should be fitted so that the debug LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the RSK only supports 5V operation.

Table 6-4 shows the pin allocation and signal names used on this connector.

	LCD					
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device	
		Pin			Pin	
1	Ground	-	2	5V Only	-	
3	No Connection	=	4	DLCDRS (P34)	94	
5	R/W (Wired to Write only)	=	6	DLCDE+ 100k pull down to ground (P36)	92	
7	No Connection	-	8	No connection	-	
9	No Connection	-	10	No connection	-	
11	DLCDD4 (P20)	52	12	DLCDD5 (P21)	53	
13	DLCDD6 (P22)	54	14	DLCDD7 (P23)	55	

Table 6-4 Debug LCD Module Connections

6.6. Option Links

Table 6-5 below describes the function of the option links contained on this RSK board and associated with Serial Port Configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R5	Serial Port	Connects programming port (Rx)	Disconnects programming port	R6		
	Configuration	to E8 connector.	(Rx) from E8 connector.			
R6	Serial Port	Connects programming port (Tx)	Disconnects programming port	R5		
	Configuration	to E8 connector.	(Tx) from E8 connector.			
R15	Serial Port	Connects serial port SCI3 (Tx) to	Disconnects serial port SCI3	R28		
	Configuration	D-type connector (SERIAL).	(Rx) from D-type connector			
			(SERIAL).			
R19	Serial Port	Disables RS232 Serial	Enables RS232 Serial	-		
	configuration	Transceiver	Transceiver			
R28	Serial Port	Connects serial port SCI3 (Tx) to	Disconnects serial port SCI3	R15		
	Configuration	D-type connector (SERIAL).	(Tx) from D-type connector			
			(SERIAL).			
R30	Serial Port	Routes serial port RXD2 (Rx) to	Disconnects serial port RXD2 (Rx)	R31, R32, R33		
	Configuration	microcontroller pins.	from microcontroller pins.			
R31	Serial Port	Routes serial port TXD2 (Tx) to	Disconnects serial port TXD2 (Tx)	R30, R32, R33		
	Configuration	microcontroller pins.	from microcontroller pins.			
R32	Serial Port	Routes serial port RS232TX (JA6) to	Disconnects serial port	R30, R31, R33		
	Configuration	microcontroller pins.	RS232TX (JA6) from			
			microcontroller pins.			
R33	Serial Port	Routes serial port RS232RX (JA6) to	Disconnects serial port	R30, R31, R32		
	Configuration	microcontroller pins.	RS232TX (JA6) from			
			microcontroller pins.			
R36	Serial Port	Connects programming port (Rx) to	Disconnects programming port	R5, R6, R37		
	Configuration	external connectors (not E8).	(Rx) from external connectors			
			(not E8).			
R37	Serial Port	Connects programming port (Tx) to	Disconnects programming port	R5, R6, R36		
	Configuration	external connectors (not E8).	(Tx) from external connectors			
			(not E8).			

Table 6-5: Serial port configuration links.

Table 6-6 below describes the function of the option links associated with application board interface. The default configuration is indicated by **BOLD** text.

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R53	Application	Use ANO of application board	Connects analog channel ANO	R95	
	board interface	interface.	of the MCU to AD_POT.		
R54	Application	Use TEND0n of application board	Use RXD2 of application board	R123	
	board interface	interface.	interface.		
R59	Application	Connects port pin P16 of the MCU	Use SCK3 of application board	R76	
	board interface	to LED3.	interface.		
R66	Application	Use SCK2 of application board	Use DACKOn of application board	R79	
	board interface	interface.	interface.		
R67	Application	Use TMR0 of application board	Use IO_6 of application board	R78	
	board interface	interface.	interface.		
R69	Application	Use IO_0 of application board	Use DLCDD4 of application	R114	
	board interface	interface.	board interface.		
R70	Application	Use TRIGb of application board	Use IO_7 of application board	R82	
	board interface	interface.	interface.		
R74	Application	Use IO_5 of application board	Use TRIGa of application board	R88	
	board interface	interface.	interface.		
R75	Application	Use IO_2 of application board	Use DLCDD6 of application	R81	
	board interface	interface.	board interface.		
R76	Application	Use SCK3 of application board	Connects port pin P16 of the	R59	
	board interface	interface.	MCU to LED3.		
R78	Application	Use IO_6 of application board	Use TMR0 of application board	R67	
	board interface	interface.	interface.		
R79	Application	Use DACK0n of application board	Use SCK2 of application board	R66	
	board interface	interface.	interface.		
R81	Application	Use DLCDD6 of application board	Use IO_2 of application board	R75	
	board interface	interface.	interface.		
R82	Application	Use IO_7 of application board	Use TRIGb of application board	R70	
	board interface	interface.	interface.		
R84	Application	Use IO_3 of application board	Use DLCDD7 of application	R90	
	board interface	interface.	board interface.		
R85	Application	Use TMR1 of application board	Use IO_4 of application board	R86	
	board interface	interface.	interface.		
R86	Application	Use IO_4 of application board	Use TMR1 of application board	R85	
	board interface	interface.	interface.		

Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To
R88	Application	Use TRIGa of application board	Use IO_5 of application board	R74
	board interface	interface.	interface.	
R90	Application	Use DLCDD7 of application board	Use IO_3 of application board	R84
	board interface	interface.	interface.	
R95	Application	Connects analog channel ANO of	Use ANO of application board	R53
	board interface	the MCU to AD_POT.	interface.	
R114	Application	Use DLCDD4 of application board	Use IO_0 of application board	R69
	board interface	interface.	interface.	
R115	Application	Use IO_1 of application board	Use DLCDD5 of application	R116
	board interface	interface.	board interface.	
R116	Application	Use DLCDD5 of application board	Use IO_1 of application board	R115
	board interface	interface.	interface.	
R123	Application	Use RXD2 of application board	Use TENDOn of application board	R54
	board interface	interface.	interface.	
R135	Application	Use TDO of application board	Use WDTOVFn of application	R157
	board interface	interface.	board interface.	
R136	Application	Use TXD2 of application board	Use DREQ0n of application board	R150
	board interface	interface.	interface.	
R137	Application	Use DLCDRS of application board	Use Vp of application board	R151
	board interface	interface.	interface.	
R138	Application	Use DLCDE of application board	Use Wp of application board	R152
	board interface	interface.	interface.	
R139	Application	Use TCLKC of application board	Use Vn of application board	R153
	board interface	interface.	interface.	
R140	Application	Use TCLKD of application board	Use Wn of application board	R154
	board interface	interface.	interface.	
R141	Application	Use CS2n of application board	Use TIOCC0 of application board	R155
	board interface	interface.	interface.	
R142	Application	Use Un of application board	Use TIOCB0 of application board	R156
	board interface	interface.	interface.	
R143	Application	Use CS0n of application board	Use Up of application board	R158, R159
	board interface	interface.	interface if R158 is fitted or	
			TIOCA0 if R159 is fitted.	
R147	Application	Use LED0 of application board	Use TRISTn of application board	R163
	board interface	interface.	interface.	
R148	Application	Use LED2 of application board	Use UD of application board	R164
	board interface	interface.	interface.	

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R150	Application	Use DREQ0n of application board	Use TXD2 of application board	R136	
	board interface	interface.	interface.		
R151	Application	Use Vp of application board	Use DLCDRS of application	R137	
	board interface	interface.	board interface.		
R152	Application	Use Wp of application board	Use DLCDE of application	R138	
	board interface	interface.	board interface.		
R153	Application	Use Vn of application board	Use TCLKC of application	R139	
	board interface	interface.	board interface.		
R154	Application	Use Wn of application board	Use TCLKD of application	R140	
	board interface	interface.	board interface.		
R155	Application	Use TIOCC0 of application board	Use CS2n of application board	R141	
	board interface	interface.	interface.		
R156	Application	Use TIOCB0 of application board	Use Un of application board	R142	
	board interface	interface.	interface		
R157	Application	Use WDTOVFn of application board	Use TDO of application board	R135	
	board interface	interface.	interface.		
R158	Application	Use Up of application board	Use CS0n of application board	R143, R159	
	board interface	interface.	interface if R143 is fitted or		
			TIOCA0 if R159 is fitted.		
R159	Application	Use TIOCA0 of application board	Use CS0n of application board	R143, R158	
	board interface	interface.	interface if R143 is fitted or Up if		
			R158 is fitted.		
R163	Application	Use TRISTn of application board	Use LED0 of application board	R147	
	board interface	interface.	interface.		
R164	Application	Use UD of application board	Use LED2 of application board	R148	
	board interface	interface.	interface.		
R185	Application	Connects SW3 to JA2 header pin	Disconnects SW3 from JA2	R190	
	board interface	23.	header pin 23.		
R190	Application	Connects SW3 to JA1 header pin 8.	Disconnects SW3 from JA1	R185	
	board interface		header pin 8.		
R204	Application	Connects PIN64 to SCL1.	Disconnects PIN64 from SCL1.	R205, R206,	
	board interface			R207	
R205	Application	Connects PIN65 to SDA1.	Disconnects PIN65 from SDA1.	R204, R206,	
	board interface			R207	
R206	Application	Connects PIN65 to TXD3	Disconnects PIN65 from TXD3.	R204, R205,	
	board interface			R207	

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R207	Application	Connects PIN64 to RXD3	Disconnects PIN64 from RXD3.	R204, R205,		
	board interface			R206		
R238	Application	Connects 5V power supply source	Separate power supply needs	-		
	board interface	feed at PWR_D to analog section	to be supplied to analog section			

Table 6-6: Application board interface links.

Table 6-7 below describes the function of the option links associated with E8 and E10A debuggers. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R4	E8	Enables E8		-		
R118	E8	Programming Flash not using	Programming Flash using SERIAL	-		
		SERIAL port.	port.			
R131	E8	If fitted or J7 is set board uses User	Removed or J7 isn't set board	-		
		Boot Mode.	doesn't use User Boot Mode.			
R132	E10A	Enables E10A, also can be enabled	E10A is disabled, can be	-		
		by fitting J5.	enabled if J5 is set.			

Table 6-7: E8 and E10A debugger links.

Table 6-8 below describes the function of the option links associated with power source. The default configuration is indicated by **BOLD** text.

		Option Link Settin	gs	
Reference	Function	Fitted	Alternative (Removed)	Related To
R173	Power source	Enables power to ADC SD from	Disable external power connector	-
	(ADC SD)	external source.	for ADC SD.	
R178	Power source	Enables power from E8.	Disable E8 power source	-
R179	Power source	Board can be powered from	Board can't be powered from	R181
		external source CON_3V3 (JA1	external source CON_3V3 (JA1	
		header pin 3)	header pin 3)	
R180	Power source	Enables power from external	Disable external power connector.	-
		source.		
R181	Power source	Fitted if board is not powered	Removed if board is powered from	R179, R182
		from external source CON_3V3	external source CON_3V3 (JA1	
		(JA1 header pin 3)	header pin 3)	
R182	Power source	Board can be powered from	Board can't be powered from	R179, R183
		external source CON_5V (JA1	external source CON_5V (JA1	
		header pin 1)	header pin 1)	

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R183	Power source	Enables power to board	Disconnects power to board	R179, R182		
		peripheral devices.	peripheral devices.			
R184,	Ground	Connects high speed ADC ground	Disconnects high speed ADC	-		
R240		to digital ground	ground from digital ground.			
R186	MCU power	Supply to MCU.	CPU current can be measured	-		
	supply		across R186			
R237,	Ground	Connects SDADC ground to	Disconnects SDADC ground from	-		
R239		digital ground.	digital ground			

Table 6-8: Power configuration links.

Table 6-9 below describes the function of the option links associated with SD ADC configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function Fitted		Alternative (Removed)	Related To	
R187	ADC SD source	Enables ANDS4P connector.	Disconnects ANDS4P connector.	R188, R189	
R188	ADC SD source	Enables ANDS4N connector.	Disconnects ANDS4N connector.	R187, R189	
R189	ADC SD source	Enables ANDS0 connector.	Disconnects ANDS0 connector.	R187, R188	

Table 6-9: SD ADC configuration links.

Table 6-10 below describes the function of the option links associated with clocks configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R219	Clock Oscillator	Parallel resistor for crystal	Not fitted	-		
R215	Clock Oscillator	On-board clock source is used	External clock source is used	-		
R218	Clock Oscillator	On-board clock source is used	External clock source is used	-		
R220	Clock Oscillator	External clock source	On-board clock source	-		
R221	Clock Oscillator	External clock source	On-board clock source	-		

Table 6-10: Clock configuration links.

Table 6-11 below describes the function of the option links associated with analog power supply. The default configuration is indicated by BOLD text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R217	Analog Voltage	Analog voltage source from on	Analog Voltage Source from	R222	
	Source	board Vcc.	external connector.		
R222	Analog Voltage	Analog Voltage Source from external	Analog voltage source from on	R217	
	Source	connector.	board Vcc.		
R224	Analog Voltage	Analog Voltage Source from external	Analog voltage source from on	-	
	Source	connector.	board Vcc.		

Table 6-11: Analog power supply links.

Table 6-12 below describes the function of the option links associated with reference voltage source. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R223	Voltage	Voltage Reference taken from	Voltage Reference set to board	R216	
	Reference	external connector (JA1 pin 7).	Vcc signal.		
	Source				
R216	Voltage	Voltage Reference set to board	Voltage Reference taken from	R223	
	Reference	Vcc signal.	external connector (JA1 pin 7).		
	Source				

Table 6-12: Voltage reference links.

Table 6-13 below describes the function of the option links associated with MCU modes. The default configuration is indicated by BOLD text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R232	MCU Mode	MCU Extended mode enabled, also	MCU Extended mode disabled	R233		
		can be enabled by fitting jumper in				
		J12				
R233	MCU Mode	MCU User Boot Mode enabled, also	MCU User Boot mode disabled	R232		
		can be enabled by fitting jumper in				
		J13				

Table 6-13: MCU mode links.

6.7. Oscillator Sources

A crystal oscillator is fitted on the RSK and used to supply the main clock input to the Renesas microcontroller. Table 6-6 details the oscillators that are fitted and alternative footprints provided on this RSK:

Component		
Crystal (X1)	Fitted	12 MHz (HC49/4H package)

Table 6-6: Oscillators / Resonators

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the mode pin states as required.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

6.9. Sigma Delta ADC

H8SX/1622 CPU includes six - channel Sigma Delta 16-bit Analog to Digital Converter. The RSK accepts up to two analog inputs. One is for the single - ended and the second for differential signal. ANDS0_IN connector can be used to connect to single - ended signal. ANDS4P_IN and ANDS4N_IN connectors can be used for differential signal.

By default, the Sigma Delta ADC is powered from PWR_D connector, but as an option it may have a separate power supply (please refer to Option Links 6.6 Sigma Delta ADC section) connected to ANALOG_POWER connector (5 volts). Please refer to the silkscreen labels on the RSK board to avoid connecting a power supply incorrectly.

Warning! Please note that overloading of inputs can cause permanent damage to the CPU and RSK. The maximum ratings for inputs can be found in section 25 'Electrical Characteristics' of H8SX/1622 Group Hardware Manual.

For more details on H8SX/1622 on-chip Sigma Delta ADC module, please refer to H8SX/1622 Group Hardware Manual.

Chapter 7. Modes

This RSK supports Boot mode, User mode, MCU Extension Mode (ROM Active) and Single Chip mode.

Details of programming the FLASH memory is described in the H8SX/1622 Group Hardware Manual.

7.1. Boot mode

The boot mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	0	1	0	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this RSK supports debugging with E10A which does not need Boot mode. To enter the Boot manually, do not connect the E10A. Press and hold the SW1/BOOT. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

7.2. User mode

Refer to H8SX/1622 Group Hardware Manual for details of User mode. The user mode settings for this RSK are shown in Table 7-2: user Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	0	0	1	User Mode

Table 7-2: User Mode pin settings

7.3. MCU Extension mode (ROM Active)

Refer to H8SX/1622 Group Hardware Manual for details of Extended mode. The MCU Extension mode settings for this RSK are shown in Table 7-3: MCU Extension Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	1	1	0	MCU Extension Mode (ROM Active)

Table 7-3: MCU Extension Mode (ROM Active) pin settings

7.4. Single chip mode

This is the default operating mode of this RSK. Refer to H8SX/1622 Group Hardware Manual for details of Single chip mode. The Single chip mode settings for this RSK are shown in Table 7-4: Single chip mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	1	1	1	Single chip Mode

Table 7-4: Single chip Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E10A debugger. Refer to H8SX/1622 Group Hardware Manual for details of programming the microcontroller without using these tools. Please note that to use E10A debugger, jumper J5 must be fitted.	

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to **Error! Reference source not found**. show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

	J1								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	AGND	1	2	AVCC2	2				
3	PIN3	3	4	PIN4	4				
5	PIN5	5	6	PIN6	6				
7	NC	7	8	NC	8				
9	NC	9	10	PIN10	10				
11	PIN11	11	12	PIN12	12				
13	PIN13	13	14	MD2	14				
15	MD1	15	16	GROUND	16				
17	LED0_TRISTn	17	18	WRn	18				
19	LED1	19	20	LLWRn	20				
21	LHWRn	21	22	RDn	22				
23	ASn	23	24	GROUND	24				
25	BCLK	25	26	UC_VCC	26				
27	A20	27	28	GROUND	28				
29	A19	29	30	A18	30				
31	A17	31	32	A16	32				
33	A15	33	34	A14	34				
35	A13	35	36	A12	36				

Table 9-1: J1

	J2							
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device			
		Pin			Pin			
1	A11	37	2	A10	38			
3	GROUND	39	4	A9	40			
5	A8	41	6	A7	42			
7	A6	43	8	A5	44			
9	GROUND	45	10	A4	46			
11	UC_VCC	47	12	A3	48			
13	A2	49	14	A1	50			
15	A0	51	16	DLCDD4_IO0	52			
17	DLCDD5_IO1	53	18	DLCDD6_IO2	54			
19	DLCDD7_IO3	55	20	TMR1_IO4	56			
21	TRIGa_IO5	57	22	TMR0_IO6	58			
23	TRIGb_IO7	59	24	LED2_UD	60			
25	GROUND	61	26	LED3_SCK3	62			
27	UC_VCC	63	28	PIN64	64			
29	PIN65	65	30	IRQ3n_ADTRGn	66			
31	SCK2_DACK0n	67	32	RXD2_TEND0n	68			
33	TXD2_ DREQ0n	69	34	EMLE	70			
35	D0	71	36	D1	72			

Table 9-2: J2

	J3								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	D2	73	2	D3	74				
3	GROUND	75	4	D4	76				
5	D5	77	6	D6	78				
7	D7	79	8	D8	80				
9	D9	81	10	D10	82				
11	UC_VCC	83	12	D11	84				
13	D12	85	14	D13	86				
15	D14	87	16	GROUND	88				
17	D15	89	18	DLCDRS_Vp	90				
19	RESn	91	20	DLCDE_Wp	92				
21	TCLKC_Vn	93	22	TCLKD_Wn	94				
23	CS3n	95	24	GROUND	96				
25	CON_XTAL	97	26	CON_EXTAL	98				
27	UC_VCC	99	28	CS2n_TIOCC0	100				
29	Un_TIOCB0	101	30	STBYn	102				
31	NC		32	TDO_WDTOVFn	104				
33	GROUND	105	34	CS0n_Up_TIOCA0	106				
35	PTTX	107	36	PTRX	108				

Table 9-3: J3

	J4								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	TRSTn	109	2	NC					
3	TMS	111	4	NC					
5	TDI	113	6	TCK	114				
7	UC_VCC	115	8	NMI	116				
9	MD0	117	10	ADPOT_AN0	118				
11	AN1	119	12	AN2	120				
13	CON_AVCC	121	14	AN3	122				
15	AVSS	123	16	IRQ4n	124				
17	CON_VREF	125	18	IRQ5n	126				
19	DA0	127	20	DA1	128				
21	AGND	129	22	AVCC2	130				
23	NC		24	NC					
25	NC		26	NC					
27	NC		28	NC					
29	NC		30	NC					
31	NC		32	AVCC2	140				
33	AGND	141	34	NC					
35	AGND	143	36	AVCC1	144				

Table 9-4: J4

9.2. Application Headers

Table 9-5 to Table 9-9 below show the standard application header connections.

	JA1									
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	5V	CON_5V	-	2	OV	GROUND	8			
3	3V3	CON_3V3	-	4	0V	GROUND	-			
5	AVCC	CON_AVCC	121	6	AVss	AVSS	123			
7	AVref	CON_VREF	125	8	ADTRG	ADTRGn	66			
9	AD0	AN0	118	10	AD1	AN1	119			
11	AD2	AN2	120	12	AD3	AN3	122			
13	DAC0	DA0	127	14	DAC1	DA1	128			
15	IO_0	IO_0	52	16	IO_1	10_1	53			
17	10_2	IO_2	54	18	IO_3	10_3	55			
19	IO_4	IO_4	56	20	IO_5	IO_5	57			
21	IO_6	IO_6	58	22	10_7	10_7	59			
23	IRQ3	NC	-	24	IIC_EX	NC	-			
25	IIC_SDA	SDA1	65	26	IIC_SCL	SCL1	64			

Table 9-5: JA1 Standard Generic Header

	JA2									
Pin	Generic Header Name	CPU board	Device	Pin	Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	RESn	RESn	91	2	EXTAL	CON_EXTAL	98			
3	NMI	NMI	116	4	VSS1	GROUND				
5	WDT_OVF	WDTOVFn	104	6	SCIaTX	TXD2	69			
7	IRQ0	IRQ4n	124	8	SCIaRX	RXD2	68			
9	IRQ1	IRQ5n	126	10	SCIaCK	SCK2	67			
11	UD	UD	60	12	CTS/RTS	NC	-			
13	Up	Up	106	14	Un	Un	101			
15	Vp	Vp	94	16	Vn	Vn	93			
17	Wp	Wp	92	18	Wn	Wn	90			
19	TMR0	TMR0	58	20	TMR1	TMR1	56			
21	TRIGa	TRIGa	57	22	TRIGb	TRIGb	59			
23	IRQ2	IRQ3n_ADTRGn	66	24	TRISTn	TRISTn	17			
25	-	-		26	-	-	-			

Table 9-6: JA2 Standard Generic Header

	JA5								
Pin	Generic Header Name	CPU board	Device	Pin	Header Name	CPU board	Device		
		Signal Name	Pin			Signal Name	Pin		
1	AD4	-	-	2	AD5	-	-		
3	AD6	-	-	4	AD7	-	-		
5	CAN1TX	-	-	6	CAN1RX	-	-		
7	CAN2TX	-	-	8	CAN2RX	-	-		
9	AD8	-	-	10	AD9	-	-		
11	AD10	-	-	12	AD11	-	-		
13	TIOC0A	TIOCA0	106	14	TIOC0B	TIOCB0	101		
15	TIOC0C	TIOCC0	100	16	M2_TRISTn	-	-		
17	TCLKC	TCLKC	93	18	TCLKD	TCLKD	90		
19	M2_Up	-	-	20	M2_Un	-	-		
21	M2_Vp	-	57	22	M2_Vn	-	-		
23	M2_Wp	-	66	24	M2_Wn	-	-		

Table 9-7: JA5 Standard Generic Header

	JA6									
Pin	Generic Header Name	CPU board	Device	Pin	Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	DREQ	DREQ0n	69	2	DACK	DACK0n	67			
3	TEND	TEND0n	68	4	STBYn	STBYn	102			
5	RS232TX	RS232TX	-	6	RS232RX	RS232RX	-			
7	SCIbRX	RxD3	65	8	SCIbTX	TxD3	64			
9	SCIcTX	-	-	10	SCIbCK	SCK3	62			
11	SCIcCK	-	-	12	SCIcRX	-	-			
13	-	-	-	14	-	-	-			
15	-	-	-	16	-	-	-			
17	-	-	-	18	-	-	-			
19	-	-	-	20	-	-	-			
21	-	-	-	22	-	-	-			
23	-	-	-	24	-	-	-			

Table 9-8: JA6 Standard Generic Header

	JA3								
Pin	Generic Header Name	CPU board	Device	Pin	Header Name	CPU board	Device		
		Signal Name	Pin			Signal Name	Pin		
1	A0	A0	51	2	A1	A1	50		
3	A2	A2	49	4	A3	A3	48		
5	A4	A4	46	6	A5	A5	44		
7	A6	A6	43	8	A7	A7	42		
9	A8	A8	41	10	А9	A9	40		
11	A10	A10	38	12	A11	A11	37		
13	A12	A12	36	14	A13	A13	35		
15	A14	A14	34	16	A15	A15	33		
17	D0	D0	71	18	D1	D1	72		
19	D2	D2	73	20	D3	D3	74		
21	D4	D4	76	22	D5	D5	77		
23	D6	D6	78	24	D7	D7	79		
25	RDn	RDn	22	26	WRn	WRn	18		
27	CSan	CS0n	106	28	CSbn	CS2n	100		
29	D8	D8	80	30	D9	D9	81		
31	D10	D10	82	32	D11	D11	84		
33	D12	D12	85	34	D13	D13	86		
35	D14	D14	87	36	D15	D15	89		
37	A16	A16	32	38	A17	A17	31		
39	A18	A18	30	40	A19	A19	29		
41	A20	A20	27	42	A21	-	-		
43	A22	-	-	44	SDCLK	BCLK	25		
45	CScn	CS3n	95	46	ALE	AS	23		
47	HWRn	LHWRn	21	48	LWRn	LLWRn	20		
49	CASn	-	-	50	RASn	-	-		

Table 9-9: JA3 Standard Generic Header

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E10A. An E10A pod is supplied with the RSK product.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 64k code and data. To use the compiler with programs greater than this size you need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Mode Support

HEW connects to the Microcontroller and programs it via the E10A. Mode support is handled transparently to the user.

10.4. Breakpoint Support

HEW supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.5. Memory Map

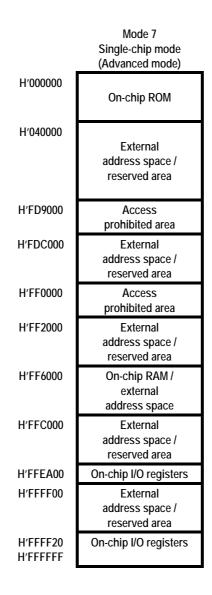


Figure 10-1: Memory Map

Chapter 11. Component Placement

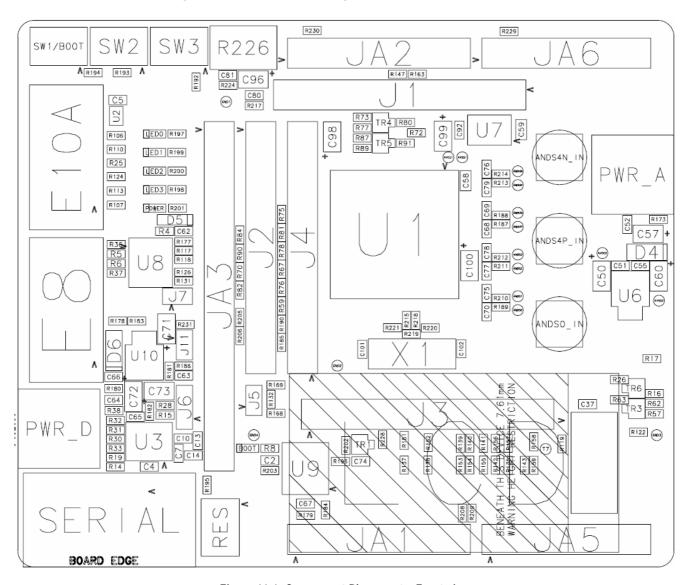


Figure 11-1: Component Placement - Front view

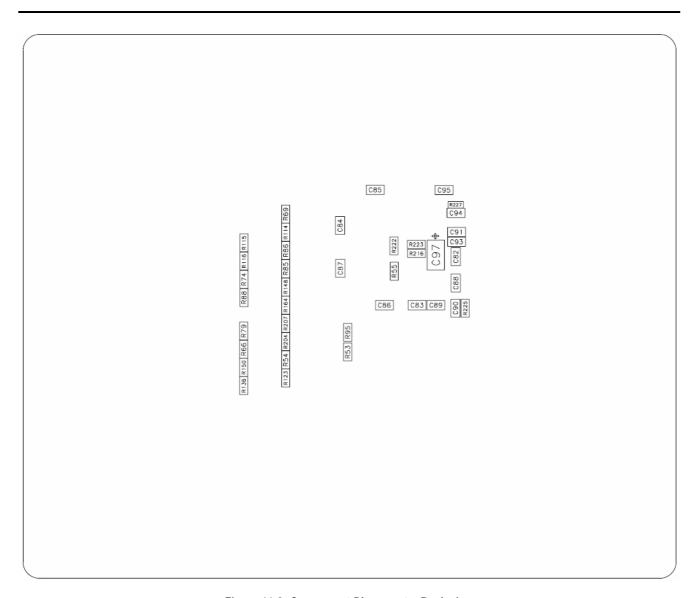


Figure 11-2: Component Placement – Back view

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW, refer to the HEW manual available on the CD or from the web site.

For information about the H8SX/1622 series microcontrollers refer to the H8SX/1622 Group hardware manual.

For information about the H8SX/1622 assembly language, refer to the H8SX Series Software Manual.

Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>
Europe: <u>tools.support.eu@renesas.com</u>

Japan: csc@renesas.com

General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/

Renesas Starter Kit for H8SX/1622

User's Manual

Publication Date Rev.1.00 20.11.2007

Published by: Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

Renesas Starter Kit for H8SX/1622 User's Manual

