BPK LCD Driver Board Part \# 6-201

This note accompanies the following products:
BPK LCD Driver Board- Pa it Number 6-201,
Serial LCD 2x16, Part number 6-111
Serial LCD 2×20, Part number 6-121
Serial LCD 2×40, Part number 6-131
Serial LCD 4×20, Part number 6-141.

Suitability

The BPK Serial Driver Board is a daughterboard that attaches to LCD modules and converts the standard 4 or 8 -bit parallel interface to a more easily managed serial interface at either 2,400 or 9,600 baud. It is compatible with all Hita chi 44780 controllers (or equivalents by OKI, Samsung etc) with up to 80 on-screen characters. It is not suitable for 4×40 displays.

Connecting the BPK Board LCD Connection- Non Backlit LCDs

The BPK board is supplied with SIL and DIL connectors- select the most appropriate connector for your LCD. Non-backlit LCDs will have either a 14×1 pin or 7×2 pin a rangement- the supplied connectors are 16×1 and 8×2 - trim these down to suit the LCD.
Solderthe selected connectorto the BACK (component, non-display side) of the LCD using the shorter length pins. Place the two double-sided foam pads on the back of the LCD to prevent the LCD and driver boardsfrom touching. Position the driver board over the headerensure that pin 1 is connected to pin 1 and that BPK pins 15 and 16 remain un-connected. Solder in place

LCD Connection- LCDs with Backlighting

The BPK board is supplied with SIL and DIL connectors- select the most appropriate connector for your LCD. Backlit LCDs will have either a 16×1 pin or 8×2 pin a rangement- the BPK board assumes the back-lighting will be connected to pins 15 (Anode) and 16 (Kathode) - check this configuration is comect before proceeding further.
Solder the selected connectorto the BACK (component, non-display side) of the LCD using the shorter length pins. Place the two double-sided foam pads on the back of the LCD to prevent the LCD and driver boardsfrom touching. Position the driver board over the headerensure that pin 1 is connected to pin 1. Solder in place

Connecting up the Driver Board/LCD

The Driver Board requires just 3 connections, incoming signal, ground and +5 v at approximately 2 mA (excluding back-lighting) making it suitable fordriving from either of the BASIC Stamps.

DB-9 Socket

Connect the signal line to pin 3 and ground to pin 5 . Some PC software requires handshaking so you may need to make the following connections:
1 to 4 to 6
7 to 8
DB-25 Socket
Connect the signal line to pin 2 and ground to pin 7. Additional connectionsthat may be needed are:
Pin 4 to 5
Pin 6 to 8 to 20.

United Kingdom www.milinst.com

Configuration

Back-Lighting (if fitted)

Powerfor the back-lighting is supplied via the 3-pin header. The back-lighting is selected On or OFF by the B / L jumper. The back-lighting curent is set by resistor RBL to approximately $200 \mathrm{~mA}(0.8 \mathrm{~V} / 3 \mathrm{R} 9)$ or $170 \mathrm{~mA}(0.8 \mathrm{~V} / 4 \mathrm{R} 7)$ for the $6-111$ and $6-201$ products. RBL may be adjusted to suit partic ular LCDs but alwa ys ensure the maximum back-lighting curent is not exceeded.

The Driver Board includes two jumpers to configure the LCD. Note the configuration is read on power-up and is retained until powered up again.

One orTwo lines?

The LCD can be configured to operate with either 1 or 2 lines of display. With the line jumper installed the display uses 2 lines.

Baud Rate?

The Driver Board will accept RS-232 signals at either 2400 Baud (jumper missing) or 9600 Baud (jumper installed).

Display

The potentiometer on the BPK board adjusts the display contrast- it has been adjusted at the factory but may be further adjusted to suit local lighting conditions.

Self-Test

Connect the serial input pin to the +5 V pin and switch on to display the firmware version.

Programming

Text for display on the LCD must be sent serially at either 2400 or 9600 baud, no parity, 8 bits, 1 stop bit and inverted format.
Instructions to the LCD must be prefixed by the single byte $<254>$ which will put the LCD into Instruction mode. The LCD automatically reverts to Display mode once an instruction is received.

Note that LCDs require a pproximately 500ms to settle down after powering up and data/control codes should not be sent to it during this period. Similarly a pause of 10 ms should be inserted after a Clear Screen or Home command before other data is sent.

Programming examples are listed below:

Parallax BASIC Stamps

With the LCD serial line connected to pin 0 the following programme line should display the word "Hello"

SEROUT0, N2400, ("Hello") -Make sure the LCD is set for 2400Baud transfer and for the Stamp2:

SEROUT 0,84+\$4000,["Hello"] -Make sure the LCD is set for 9600 Baud transfer
The LCD will accept all the common control codes. To differentiate between control codes and normal characters the LCD must first be sent the code 254 . To clear the LCD screen therefore (control code 1):

SEROUT0,N2400,(254,1)
Once the control code has been received the LCD will revert back to normal operation (ie expect to receive a nomal character). The othercontrol codes you may need are asfollows:

Instruction/Action
Clear Screen

Code

1

Reg 0 ffice: Milford House, 120 High Street, South Milford, LEEDS LS25 5AQ United Kingdom Reg Number: 4222329 Tel: 01977683665 Fax 01977681465 www.milinst.com

Scroll display one character left	24
Scroll display one character right	28
Home (and undo sc rolling)	0
Move cursor one character left	16
Move cursorone character right	20
Tum on underline cursor	14
Tum on blinking cursor	13
Tum off cursor	12
Blank the display (reta ining data)	8
Restore the display (without cursor)	12
Set display (DD) RAM address	128 +address
Set character (CG) RAM address	64 +address

The last two instructions allow you to write to specific locations in the LCD's memory. By setting the display data (DD) RAM address, you can control the location on the display at which subsequent characters will appear. This lets you update part of the display without having to reprint the entire screen.

By entering values into character- generator (CG) RAM, you can define character pattems to create simple graphics. The following figure shows how to calculate the data for these pattems.

	Bit Map	Data (Binary	Data (Decimal)
0	$\square \square \square \square \square$	00000	0
1	$\square \square \square \square \square$	00100	4
2	$\square \square \square \square \square$	01110	14
3	$\square \square \square \square \square$	11111	31
4	$\square \square \square \square \square$	01110	14
5	$\square \square \square \square \square$	00100	4
6	$\square \square \square \square \square$	00000	0
7	$\square \square \square \square \square$	00000	0

To define one of the 8 characters in CG RAM, put the LCD into Instruction mode, then send the following value to the LCD: 64+ ($8 \times$ character_no.) where character_no. is in the range 0 to 7. Then send the bit-map data calculated as shōwn above. For example to define CG RAM 3 with the above character send the following byte string:
[254, $88,0,4,14,31,14,4,0,0]$ where 88 is calculated from $64+3 \times 8=88$.
To print this character at the $4^{\text {th }}$ position on line 1 send the following:
[254,132] - 254 to put into instruction mode and move the cursor to 128 (start of line 1) $+4=132$
[3] - Display the character in location 3. CG RAM occupies location 0 to 7.
See below for further information on print locations.

Reg 0 ffice: Milford House, 120 High Street, South Milford, LEEDS LS25 5AQ United Kingdom Reg Number: 4222329 Tel: 01977683665 Fax 01977681465 www.milinst.com

PC Operation

The following programme lines illustrate the equivalent lines to drive the LCD from QBASIC running on a PC.

OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUTAS \#1 'Sets up Com port 1 for 2400 baud
SLEEP 1 ' Pause for 1 second

PRINT\#1, "Hello" 'Prints the word "Hello" to the screen
SLEEP 10
PRINT \#1, CHR\$(254); CHR\$(1); ' Clears the sc reen

Pint Addresses

All LCDs are fitted with a 40 characters per line Character RAM. This meansforexample that sending 40 characters to a 20-character display would display only the first 20 characters sent. The missing characters are stored in the LCD's RAM but not displayed. It would be necessary to scroll-left the display to be able to see these characters. There is no automatic wrap-round to the second (orsubsequent) lines. Once the end of a (physical) line is reached, the DD RAM address must be reset to the beginning of the next (physical) line. DD RAM address examples for ourstandard LCDs are shown below:

2x16 LCD

Lne	ss:	0	1	2	3	4	
	DD address:	128	129	130	131	132	143
Line 2	address:	64	65	66	67	68	79
	DD address	192	193	194	195	196	207

2×20 LCD

Line 1 address: $0 \quad 1 \quad 2 \quad 3 \quad 4 \ldots \ldots . .19$ DD address: $128129130131132 \ldots \ldots . .147$
Line 2 address: $64 \quad 65 \quad 66 \quad 67 \quad 68 \ldots \ldots . .83$ DD address 192193194195 196.......... 211

2x40 LCD

Line 1 address: $0 \quad 1 \quad 2 \quad 3 \quad 4 \ldots \ldots . .39$ DD address: $128129130131 \quad 132 \ldots \ldots . .167$
Line 2 address: $64 \quad 65 \quad 66 \quad 67 \quad 68 \ldots \ldots . .103$ DD address 192193194195 196......... 231

4×20 LCD

Line 1 address: $\begin{array}{llcccccc}0 & 1 & 2 & 3 & 4 & \ldots \ldots \ldots & 19\end{array}$
DD address: $128129130131132 \ldots \ldots . .147$
Line 2 address: $64 \quad 65 \quad 66 \quad 67 \quad 68 \ldots \ldots .$. DD address 192193194195 196......... 211
Line 3 address: $20 \quad 21 \quad 22 \quad 23 \quad 24 \ldots \ldots . . .39$ DD address: $148149150151152 \ldots \ldots . .167$
Line 4 address: $84 \quad 85 \quad 86 \quad 87 \quad 88 \ldots \ldots . .103$ DD address 212213214215 216......... 231

Reg 0 ffice: Milford House, 120 High Street, South Milford, LEEDS LS25 5AQ United Kingdom Reg Number: 4222329 Tel: 01977683665 Fax 01977681465 www.milinst.com

