MICROPROFILE LINE MATCHING TRANSFORMER

Features
* Surface Mount
* 7 mm seated height
* Vacuum encapsulated
* IEC 950, UL 1950 and EN 60950 certified
* UL Recognized Component
* BABT Certificate of Recognition
* CSA NRTL/C Certificate of Compliance

Applications

* Telecommunications
* V.22bis and V.32bis modems
* Line matching
* Portable computers
* Instrumentation

DESCRIPTION

P2781 is a microprofile transformer for applications where high performance and safety isolation to international standards are required in an extremely small case size.

Designed specifically as a surface mount device, the P2781 features a 7 mm seated height and is vacuum encapsulated and tested to 6500VDC.

Despite the subminiature size, the performance is the equal of that of much larger components. The P2781 offers reinforced insulation, is ideal for voice telecommunications and for data communications to medium speed, whilst capable of being matched to both 600Ω and complex impedance telephone lines.

At moderate transmit power levels (e.g. -10dBm) performance to V.32bis may be achieved.

In instrumentation applications, the P2781 offers a wideband frequency response from 50 Hz to 40 kHz .

P2781 is certified to IEC 950, EN 60950, EN 41003, and UL1950. P2781 is a UL Recognized Component, and is supported by a BABT Certificate of Recognition, a CSA Certificate of Compliance and an IEC CB Test Certificate.

SPECIFICATIONS

Electrical

At $\mathrm{T}=25^{\circ} \mathrm{C}$ and as circuit Fig. 1 unless otherwise stated.

Parameter	Conditions	Min	Typ	Max	Units
Insertion Loss	$\begin{aligned} & f=2 \mathrm{kHz}, R_{L}=600 \Omega \\ & f=2 \mathrm{kHz}, R_{L}=430 \Omega \end{aligned}$		-	$\begin{aligned} & \hline 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Frequency response	-3dB LF cutoff -3dB HF cutoff $200 \mathrm{~Hz}-4 \mathrm{kHz}$		$\begin{aligned} & 50 \\ & 40 \end{aligned}$	± 0.2	$\begin{gathered} \mathrm{Hz} \\ \mathrm{kHz} \\ \mathrm{~dB} \end{gathered}$
Return Loss	$200 \mathrm{~Hz}-4 \mathrm{kHz}$	18	-	-	dB
Distortion ${ }^{(1)}$	$\mathrm{f}=450 \mathrm{~Hz}$ 0 dBm in line 3rd Harmonic	-	-60	-54	dBm
Balance	$\begin{array}{\|l\|} \mathrm{DC}-5 \mathrm{kHz} \\ \text { Method TG25 } \end{array}$	80	-	-	dB
Saturation	Excitation 50 Hz 250Vrms Output voltage across line	-	-	$\begin{aligned} & 10 \\ & 65 \end{aligned}$	Vrms Vpeak
Voltage Isolation ${ }^{(2)}$	$\begin{array}{\|l\|l} 50 \mathrm{~Hz} \\ \mathrm{DC} \end{array}$	$\begin{gathered} 3.88 \\ 5.5 \end{gathered}$	-	-	$\underset{\mathrm{kV}}{\mathrm{kVrms}}$
Operating range: Functional Storage Humidity	Ambient temperature	$\begin{aligned} & -10 \\ & -40 \end{aligned}$	-	$\begin{gathered} +85 \\ +125 \\ 95 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \text { ○. } \\ \text { \%R.H. } \end{gathered}$

Lumped equivalent circuit parameters as Fig. 1

DC resistance, $\mathrm{R}_{\mathrm{DC}}{ }^{(3)}$	Sum of windings	205	-	245	Ω
Leakage inductance $\Delta \mathrm{L}$	4.2	-	4.9	mH	
Shunt	$-43 \mathrm{dBm} \mathrm{200Hz}$	1.4	-	3.5	H
inductance $\mathrm{Lp}^{(4)}$	$-43 \mathrm{dBm} \mathrm{1kHz}$	-	1.8	-	H
Shunt loss $\mathrm{Rp}^{(4)}$	$-43 \mathrm{dBm} \mathrm{200Hz}$	5	-	15	$\mathrm{k} \Omega$
	-43 dBm 1 kHz	-	10	-	$\mathrm{k} \Omega$

Notes

1. Third harmonic typically exceeds other harmonics by 20 dB .
2. Components 100% tested at 6.5 kVDC .
3. Caution: do not pass DC through windings. Telephone line current, etc. must be diverted using choke or semiconductor line hold circuit.
4. At signal levels greater than -20 dBm , Lp will increase and Rp will decrease slightly but the effect is usually favourable to the return loss characteristic.
5. Excludes shipping materials. Components are dry-packed and sealed as shipped. Refer to Profec Technologies for appropriate storage conditions for sealed consignments.

PERFORMANCE
600Ω MATCH

Frequency response driven by terminal equipment (voltage scource with 430Ω series resistance) measured across 600Ω is within $\pm 0.2 \mathrm{~dB} 200 \mathrm{~Hz}$ to 4 kHz

Third Harmonic Distortion vs. Signal Level Fig 5

Note:
To obtain harmonic distortion power in dBm , add fundamental power in dBm to third harmonic in dBc e.g. at -10 dBm power in line at 450 Hz , third harmonic power is $-10+(-74)=-84 \mathrm{dBm}$ typical.

EUROPEAN CTR21 COMPLEX MATCH

The circuit of Fig. 6 gives good TX and RX flatness ($\pm 0.3 \mathrm{dBm} 200 \mathrm{~Hz}-4 \mathrm{kHz}$). An alternative arrangement, using existing PCB sites, is shown in Fig. 7. Note, however, that TX flatness will be degraded with the topology.

CONSTRUCTION

Dimensions shown are in millimetres (inches).
Geometric centres of outline and pad grid coincide within a tolerance circle of $0.3 \mathrm{~mm} \emptyset$.
Observe correct orientation in circuit.

SAFETY

Manufactured from materials conforming to flammability requirements of UL94V-0 and EN 60950:1992 (BS 7002:1992) sub-clause 1.2.13.2 (V-0).

Distance through reinforced insulation 0.4 mm minimum.
Creepage and clearances in circuit are 7 mm minimum where PCB pads do not exceed 3 mm . Constructed and fully encapsulated in accordance with EN 60950:1992 (BS 7002:1992) IEC950:1991 and BS EN 41003:1997 (reinforced), 250Vrms maximum working voltage.

CERTIFICATION

Certified by BSI to IEC 950:1991/A4:1996 (IECCB Test Certificate No. GB441W) subclauses 1.5, 1.5.1, 1.5.3, 2.2, 2.2.2, 2.2.3, 2.2.4, 2.9.2, 2.9.3, 2.9.4, 2.9.6, 2.9.7, 4.4, 4.4.3.2 (class V-0) and 5.3 for a maximum working voltage of 250 Vrms , nominal mains supply voltage not exceeding 250 Vrms and a maximum operating temperature of $+85^{\circ} \mathrm{C}$ in Pollution Degree 2 environment, reinforced insulation.

CAN/CSA C22.2 No. 950-95/UL1950, certified by CSA, Third Edition, including revisions through to revision date March 1, 1998, based on Fourth Amendment of IEC 950, Second Edition, maximum working voltage 250 V rms, Pollution Degree 2, reinforced insulation.

UL File number E203175.
CSA Certificate of Compliance 1107696 (Master Contract 1188107).
Certified by BABT to EN 60950.
BABT Certificate CR/0139.
Additionally, Profec Technologies certifies all transformers as providing voltage isolation of $3.88 \mathrm{kVrms}, 5.5 \mathrm{kV}$ DC minimum. All shipments are supported by a Certificate of Conformity to current applicable safety standards.

ABSOLUTE MAXIMUM RATINGS

(Ratings of components independent of circuit).

Short term isolation voltage (2s)	$\begin{aligned} & 4.6 \mathrm{kVrms} \text {, } \\ & 6.5 \mathrm{kVDC} \end{aligned}$
DC current	$100 \mu \mathrm{~A}$
Storage temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$
Soldering temperature	
Profile peak - either	$260{ }^{\circ} \mathrm{C}$ - 10 s
or	$250{ }^{\circ} \mathrm{C}$ 30s
or	$240^{\circ} \mathrm{C}$ 60s

COPYRIGHT

ETAL and P2781 are Trade Marks of Profec Technologies Ltd.
The Trade Mark ETAL is registered at the UK Trade Marks Registry.
Profec Technologies Ltd. is the owner of the design right under the Copyright Designs and Patents Act 1988 and no rights or licences are hereby granted or implied to any third party.
© 1997 and 2000 Profec Technologies Ltd. Reproduction prohibited.

Profec Technologies Ltd., 10 Betts Avenue, Martlesham Heath, Ipswich, IP5 3RH, England Telephone: +44 (0) 1473611422 Fax: +44 (0) 1473611919

Websites: www.etal.Itd.uk www.profec.com
Email: info@etal.Itd.uk sales@profec.com

