CFPT-120

ISSUE 1: 7 SEPTEMBER 1999

Delivery Options

 Common frequencies are available from stock. Please see p224 for details.

Description

 CFPT-120 is a surface mount temperature compensated voltage controlled crystal oscillator providing a high degree of frequency stability over a wide temperature range.

Package Outline

• $7.0 \times 5.0 \times 2.0$ mm SMD (surface mount device)

Standard Frequencies

 12.6MHz, 12.8MHz, 13.0MHz, 14.4MHz, 14.85MHz, 19.2MHz, 19.44MHz, 19.68MHz, 19.8MHz

Output Waveform

Clipped Sine 0.8V peak to peak minimum

Ageing

■ ±1ppm typical first year @ 25°C

Frequency Adjustment

 ±5ppm to ±15ppm external control voltage at 1.5V ±1.0V applied to pin 1

Frequency Stability

■ Temperature: see table

■ Supply Voltage Variation: ±5% ±0.2ppm max.

■ Load Variation: ±10% ±0.3ppm max.

■ After reflow: ±1ppm max

Voltage Control

■ 1.5V ±1.0V applied to pin 1

Storage Temperature Range

■ -40 to 85°C

Solder Reflow

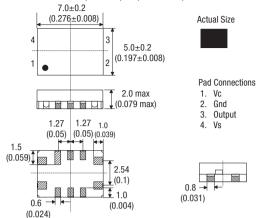
■ Pre-heat: 150 to 180°C/55 to 70 seconds max.

Reflow: 180°C/40 to 60 seconds max., 200°C/40 seconds max., 220°C ±5°C/5 to 15 seconds max.

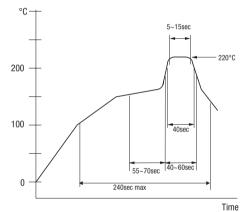
Marking

Model number

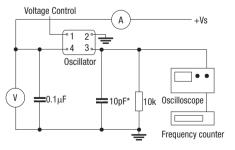
Frequency Stability Code /Temperature Range Code


Frequency

Date code (Year/Week)


Minimum Order Information Required

 Frequency + Model Number + Frequency Stability + Operating Temperature Range


Outline in mm (inches) - (scale 2:1)

Typical Solder Condition - Infrared Reflow

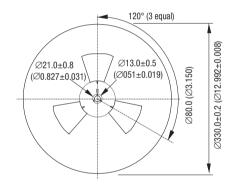
Test Circuit

*Inclusive of jigging & equipment capacitance

Electrical Specification - maximum limiting values when measured in test circuit

Frequency Range	Frequency Tolerance @ 25°C	Supply Voltage	Supply Current	Voltage Control Change	Output Waveform	Output	Model Number	
12.60 to 19.80MHz	±.1.0ppm	3V±0.15V	2.0mA	±8.0ppm min. / 1.5V±1.0V	Clipped Sine	0.8Vp-p min	CFPT-120	

Frequency Stabilities Available Over Operating Temperature Ranges


Operating	Frequency Stabilities Vs Operating Temperature Range					
Temperature Ranges	±2.0ppm	±2.5ppm	±5.0ppm			
0 to 50°C	Code GP	Code HP	Code KP			
–10 to 60°C	Code GR	Code HR	Code KR			
–20 to 75°C	_	Code HG*	Code KG			
−30 to 75°C	_	_	Code KU			
* Please note Code HG is the standard from	equency stability vs operating tempera	ature range				
Ordering Example		12.60MHz <u>CFPT-120</u> <u>HG</u>				
Frequency — Model No						

Outline in mm (inches) - Tape

Frequency Stability Vs Operating Temperature Code

4.0 ± 0.1 1.75±0.1 (0.157±0.004) (0.069 ± 0.004) 0.3 ± 0.05 Ø1.5^{+0.1}_{-0.0} 2.0 ± 0.1 (0.012±0.002) $(\emptyset 0.059^{+0.004}_{-0.0})$ (0.079±0.004) 7.5 ± 0.1 (0.295±0.004) 16.0±0.3 .630±0.012) 7.65±0.1 (0.3±0.004) 2.2±0.1→ 8.0 ± 0.1 (0.0866 ± 0.004) Ø2.0±0.1 (0.315±0.004) (Ø0.078±0.004) 5.75 ± 0.1 (0.226 ± 0.004)

Outline in mm (inches) - Reel (scale 1:8)

