

Agilent U3606A Multimeter|DC Power Supply

Data Sheet

The real two instruments in one box

Pick both

Digital multimeter (DMM) and power supply? Simultaneous and independent? Small and cost-effective? Get all this and more in the Agilent U3606A multimeter|DC power supply. This convenient new hybrid combines a 512 -digit DMM and $30-\mathrm{W}$ dual-range supply in a single unit. Operating simultaneously and independently, the instruments provide efficient, affordable testing while saving space on the bench or in a rack.

The 5.5-digit DMM

The 5.5-digit DMM includes nine essential multimeter capabilities as well as 4 -wire milliohm measurement and eight built-in math functions. The DMM also provides a fast measurement speed of up to 37 readings/s, and a low error rate of up to 0.025% DCV accuracy.

Physical security and seamless system integration

Instruments may be at risk of theft or misplacement when left unattended on the bench. With the hybrid multimeter's rear Kensington lock slot, you can secure your instrument and be assured that it is where you expect it to be for your continued testing the next day. The rackmountable U3606A also enables seamless integration into your system via popular GPIB and USB-TMC488.2 interfaces, programmable with standard SCPI commands.

Agilent Technologies

The 30-W DC power supply

The 30-W DC power supply provides a dual-range output of $30 \mathrm{~V} / 1 \mathrm{~A}$ and $8 \mathrm{~V} / 3 \mathrm{~A}$, with an excellent load regulation of up to $0.01 \%+3 \mathrm{mV}$. The power supply adds overvoltage and overcurrent load protection (OVP and OCP), a built-in square-wave generator, and auto scan and ramp for multilevel DC bias testing. Remote sensing capability further ensures accurate supply of power at load end.

Square-wave generator

Square-wave output is a unique function for many applications, such as pulse-width modulation (PWM) output, adjustable voltage control, and synchronous clock (baud rate generator). You can also use this function to check and calibrate flowmeter displays, counters, tachometers, oscilloscopes, frequency converters, frequency transmitters, and other frequency input devices. The U3606A's square-wave output provides selectable frequencies up to 4.8 kHz with variable duty cycles and amplitudes.

Sweep functions

Sweep functions in the U3606A are auto ramp and scan outputs for lowspeed multilevel DC bias tests, such as margin tests, power cycling tests and relay control. Both functions are conveniently configurable from the front panel to sweep up to 100 steps for scan and 10,000 steps for ramp, programmable to 105% of full scale.

Auto scan output

Auto ramp output

Take a closer look

Figure 1. Front panel of the U3606A.

Figure 2. Rear panel of the U3606A.

Digital multimeter specifications

Specification assumptions:

- Specifications stated are after 60 -minutes of warm-up and for $51 / 2$-digit resolution
- One-year calibration cycle, with calibration temperature of $18^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
- Operating temperature: $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64.4^{\circ} \mathrm{F}\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Accuracy is expressed as $\pm(\%$ of reading $+\%$ of range)
- Temperature coefficient: Add [0.1 x (the specified accuracy) $\left./{ }^{\circ} \mathrm{C}\right]$ for $0{ }^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
- Relative humidity (RH) up to 80% at $30^{\circ} \mathrm{C}$, proportional to 50% for $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

DC specifications

Function	Range ${ }^{1}$	Test current or burden voltage	Accuracy \pm (\% of reading + \% of range)			Temperature coefficient $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ $28^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
			24 hours ${ }^{2}$ $23{ }^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$	90 days $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	
DC voltage	100.000 mV	-	$0.012+0.008$	$0.015+0.008$	$0.025+0.008$	$0.0015+0.0005$
	1.00000 V	-	$0.012+0.005$	$0.015+0.005$	$0.025+0.005$	$0.0010+0.0005$
	10.0000 V	-	$0.012+0.005$	$0.015+0.005$	$0.025+0.005$	$0.0020+0.0005$
	100.000 V	-	$0.012+0.005$	$0.015+0.005$	$0.025+0.005$	$0.0015+0.0005$
	1000.00 V	-	$0.012+0.005$	$0.015+0.005$	$0.025+0.005$	$0.0015+0.0005$
DC current ${ }^{3}$	10.0000 mA	$<0.2 \mathrm{~V}$	$0.05+0.015$	$0.05+0.015$	$0.05+0.015$	$0.0060+0.0005$
	100.000 mA	$<0.2 \mathrm{~V}$	$0.05+0.005$	$0.05+0.005$	$0.05+0.005$	$0.0060+0.0005$
	1.00000 A	$<0.3 \mathrm{~V}$	$0.05+0.007$	$0.05+0.007$	$0.15+0.007$	$0.0100+0.0005$
	3.0000 A	$<0.7 \mathrm{~V}$	$0.05+0.007$	$0.05+0.007$	$0.15+0.007$	$0.0150+0.0010$
Resistance ${ }^{4}$	100.000Ω	0.83 mA	$0.04+0.008$	$0.04+0.008$	$0.05+0.008$	$0.0050+0.0005$
	1000.00Ω	0.83 mA	$0.04+0.005$	$0.04+0.005$	$0.05+0.005$	$0.0050+0.0005$
	$10.0000 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$	$0.04+0.005$	$0.04+0.005$	$0.05+0.005$	$0.0050+0.0005$
	$100.000 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$0.04+0.005$	$0.04+0.005$	$0.05+0.005$	$0.0050+0.0005$
	$1.00000 \mathrm{M} \Omega$	900 nA	$0.05+0.005$	$0.05+0.005$	$0.06+0.005$	$0.0050+0.0005$
	$10.0000 \mathrm{M} \Omega$	205 nA	$0.20+0.005$	$0.20+0.005$	$0.25+0.005$	$0.0150+0.0005$
	$100.000 \mathrm{M} \Omega$	$205 \mathrm{nA} \mathrm{\|\mid} 10 \mathrm{M} \Omega$	$1.60+0.005$	$1.60+0.005$	$2.00+0.005$	$0.1500+0.0005$
Continuity	$1.0000 \mathrm{k} \Omega$	0.83 mA	$0.04+0.005$	$0.04+0.005$	$0.05+0.005$	$0.0050+0.0005$
Diode ${ }^{5}$	1.0000 V	0.83 mA	$0.04+0.005$	$0.04+0.005$	$0.05+0.005$	$0.0050+0.0005$
Capacitance ${ }^{6}$	1.000 nF	$0.75 \mu \mathrm{~A}$	-	-	$2.0+0.8$	$0.02+0.001$
	10.00 nF	$0.75 \mu \mathrm{~A}$	-	-	$1.0+0.5$	$0.02+0.001$
	100.00 nF	$8.3 \mu \mathrm{~A}$	-	-	$1.0+0.5$	$0.02+0.001$
	$1.000 \mu \mathrm{~F}$	$83 \mu \mathrm{~A}$	-	-	$1.0+0.5$	$0.02+0.001$
	$10.00 \mu \mathrm{~F}$	$83 \mu \mathrm{~A}$	-	-	$1.0+0.5$	$0.02+0.001$
	$100.0 \mu \mathrm{~F}$	$83 \mu \mathrm{~A}$	-	-	$1.0+0.5$	$0.02+0.001$
	$1000 \mu \mathrm{~F}$	0.83 mA	-	-	$1.0+0.5$	$0.02+0.001$
	$10000 \mu \mathrm{~F}$	0.83 mA	-	-	$2.0+0.5$	$0.02+0.001$

1. 20% over-range on all ranges, except for $1000 \mathrm{~V}_{\text {dc }}$ range.
2. Relative to calibration standards.
3. Any current measurement greater than 500 mA will have a temporary thermo-effect. If you wish to measure a lower current or offset current immediately after a high-current measurement, ensure that the U3606A has cooled down.
4. Specifications stated are for 2 -wire resistance measurements using Null math operation. Without Null, add a 0.2Ω error. To eliminate noise interference which may be induced by the test leads, a shielded test cable is recommended for resistances above $100 \mathrm{k} \Omega$.
5. Specifications stated are for the voltage measured at the input terminals only. The test current (1 mA) is typical. Variation in the current source will create some variation in the voltage dropped across a diode junction.
6. Specifications stated are for open test lead measurements with film capacitor or better, using Null math operation.

Digital multimeter specifications (continued)

Low-resistance specifications

		Accuracy $\pm(\% \text { of reading }+\% \text { of range })^{1}$
Range	Test current	1 year $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$
$100 \mathrm{~m} \Omega$	1.0000 A	$0.25+0.05$
$1000 \mathrm{~m} \Omega$	0.1000 A	$0.25+0.03$
10Ω	0.1000 A	$0.25+0.03$

1. Four-wire measurement method is used. Test current is sent from the FORCE terminals and resistance is measured at the SENSE terminals.

AC specifications

$\left.\begin{array}{lllllll} & & & & & & \text { Accuracy } \pm(\% \text { of reading }+\% \text { of range })\end{array} \begin{array}{l}\text { Temperature } \\ \text { coefficient }\end{array}\right)$

1. 20% over-range on all ranges, except for $750 \mathrm{~V}_{\mathrm{ac}}$ range.
2. Relative to calibration standards.
3. Specifications stated are for input signals greater than 5% of range.
4. Available ranges: $100.000 \mathrm{mV}, 1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 750.00 \mathrm{~V}$.
5. For 750 V range accuracy is specified for input less than 200 V rms
6. For 100 mV range, the 10 kHz to 30 kHz accuracy is $1.5+0.3$.
7. Additional error 0.003% of full scale per kHz to be added when signal input changes less than 10% of range.
8. For 100 mV range, the 30 kHz to 100 kHz accuracy is $5+0.3$.
9. For 750 V range accuracy is specified for input less than $300 \mathrm{~V}_{\text {rms }}$.
10. Available ranges: $10.0000 \mathrm{~mA}, 100.000 \mathrm{~mA}, 1.00000 \mathrm{~A}, 3.0000 \mathrm{~A}$.
11. For $1 A$ and $3 A$ ranges, the accuracy is specified for frequencies less than 5 kHz .

Digital multimeter specifications (continued)

Frequency specifications

Function	Input range	Frequency range: minimum input frequency $=1 \mathrm{~Hz}$	Accuracy \pm (\% of reading $+\%$ of range) 1 year ($23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)	Temperature coefficient $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ $28^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Frequency	Voltage: 100 mV to $750 \mathrm{~V}^{1}$	$\begin{aligned} & <2 \mathrm{~Hz} \\ & <20 \mathrm{~Hz} \\ & 20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.18+0.003 \\ & 0.04+0.003 \\ & 0.02+0.003 \\ & 0.02+0.003 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.005 \\ & 0.005 \\ & 0.005 \end{aligned}$
	Current: $10 \mathrm{~mA} \text { to } 3 \mathrm{~A}$	$\begin{aligned} & <2 \mathrm{~Hz} \\ & <20 \mathrm{~Hz} \\ & 20 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.18+0.003 \\ & 0.04+0.003 \\ & 0.02+0.003 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.005 \\ & 0.005 \end{aligned}$

	Minimum frequency sensitivity for voltage measurement (RMS sine wave)		
Input range ${ }^{2}$	20 Hz to 100 kHz	100 kHz to 300 kHz	300 kHz to 1 MHz
100 mV	50 mV	50 mV	0.5 V
1.0 V	100 mV	120 mV	0.5 V
10 V	1 V	1.2 V	-
100 V	10 V	12 V	-
750 V	100 V	-	-

	Minimum frequency sensitivity for current measurement (RMS sine wave)	
Input range	20 Hz to 100 kHz	
10 mA	1 mA	
100 mA	10 mA	
1 A	100 mA	
3 A	300 mA	

1. For 100 mV and 1 V ranges, the measurable frequency is up to 1 MHz at 0.5 V input signal.
2. Maximum input for the specified accuracy $=10 \times$ range or $1000 \mathrm{~V}_{d c}$.

All frequency counters are susceptible to errors when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.

Duty cycle and pulse width specifications

Function	Range	Resolution	Accuracy at full scale
Duty cycle	$100.000 \%{ }^{1}$	0.001%	$0.3 \%+0.2 \%$ per kHz
Pulse width	$199.999 \mathrm{~ms}^{2}$	0.001 ms	Duty cycle/frequency
	$1999.99 \mathrm{~ms}^{2}$	0.01 ms	Duty cycle/frequency

1. The range is from $\{10 \mu s \times$ frequency $\times 100 \%\} \sim\{[1-(10 \mu s \times$ frequency $)] \times 100 \%\}$. For example, a 1 kHz signal can be measured from 1% ~ 99\%.
2. The positive or negative pulse width must be greater than 10μ s. The range of the pulse width is determined by the frequency of the signal.

Digital multimeter specifications (continued)

Measurement speeds (typical)

Function	Rate	Reading speed ${ }^{1}$ (readings/second)	Reading speed over USB² (readings/second)	Reading speed over GPIB ${ }^{3}$ (readings/second)
DC voltage (10 V)	Slow ($51 / 2$ digits)	15	17	17
	Fast ($41 / 2$ digits)	70	31	32
DC current$(1 \mathrm{~A})$	Slow ($51 / 2$ digits)	15	17	17
	Fast ($41 / 2$ digits)	70	37	36
AC voltage (10 V at 1 kHz)	Slow ($51 / 2$ digits)	15	17	17
	Fast ($41 / 2$ digits)	70	31	32
AC current (1 A at 1 kHz)	Slow ($51 / 2$ digits)	15	16	17
	Fast ($41 / 2$ digits)	70	37	37
Resistance (100 k Ω)	Slow ($51 / 2$ digits)	15	17	17
	Fast ($41 / 2$ digits)	70	27	31
Capacitance (10 $\mu \mathrm{F}$)	Slow/Fast (3112 digits)	5	4.4	4.6
Frequency (voltage path at $10 \mathrm{~V}, 1 \mathrm{kHz})$	Slow ($51 / 2$ digits)	9	2.7	2.7
	Fast ($41 / 2$ digits)	9	2.7	2.7
Frequency (current path at $10 \mathrm{~V}, 1 \mathrm{kHz})$	Slow ($51 / 2$ digit)	9	2.7	2.7
	Fast ($411 / 2$ digit)	9	2.7	2.7
1. Reading rate of the A / D converter.				
2. Number of measurements per second that can be read through USB using SCPI "READ?" command.				
3. Number of measurements per second that can be read through GPIB using SCPI "READ?" command.				

Supplementary specifications

DC voltage

Measurement method	Sigma Delta A-to-D converter
Maximum input voltage	$1000 \mathrm{~V}_{\mathrm{dc}}$ on all ranges
Input impedance	$10 \mathrm{M} \Omega \pm 2 \%$ range (typical) in parallel with capacitance $<120 \mathrm{pF}$
Input protection	$1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges, < 0.3 A short circuit
Response time	Approximately 0.15 s when the displayed reading reaches $99.9 \% \mathrm{DC}$ value of the tested input signal at the same range
DC current	
Measurement method	Sigma Delta A-to-D converter
Maximum input current	10 mA to 3.0 A DC
Burden voltage and shunt resistance	- $<0.2 \mathrm{~V}, 10 \Omega$ for 10 mA range - $<0.2 \mathrm{~V}, 1 \Omega$ for 100 mA range - <0.3 V, 0.1Ω for 1 A range - $<0.7 \mathrm{~V}, 0.01 \Omega$ for 3 A range
Input protection	Protected with $3.15 \mathrm{~A} / 500 \mathrm{~V}$, FF fuse
Response time	Approximately 0.15 s when the displayed reading reaches $99.9 \% \mathrm{DC}$ value of the tested input signal at the same range

Digital multimeter specifications (continued)

Supplementary specifications

AC voltage	
Measurement method	AC coupled true rms
Maximum input voltage	$750 \mathrm{~V}_{\text {rms }} / 1200 \mathrm{~V}_{\text {peak }} / 3 \times 10^{7} \mathrm{~V}-\mathrm{Hz}$ of product
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%$ range (typical) in parallel with capacitance $<120 \mathrm{pF}$
Input protection	$750 \mathrm{~V}_{\mathrm{rms}}$ on all ranges
Crest factor	For < 5:1 errors included. Limited by the peak input and 100 kHz bandwidth. Maximum 3.0 at full scale.
Peak input	300% of range. Limited by maximum input.
Response time	Approximately 2.5 s when the displayed reading reaches $99.9 \% \mathrm{AC}$ rms value of the tested input signal at the same range.
Overload ranging	Will select higher range if peak input overload is detected during auto range. Overload is reported in manual ranging.
AC current	
Measurement method	AC coupled true rms
Maximum input current	10 mA to 3.0 A DC or AC rms
Burden voltage and shunt resistance	- < $0.2 \mathrm{~V}, 10 \Omega$ for 10 mA range - <0.2 V, 1Ω for 100 mA range - <0.3 V, 0.1Ω for 1 A range - $<0.7 \mathrm{~V}, 0.01 \Omega$ for 3 A range
Input protection	Protected with $3.15 \mathrm{~A} / 500 \mathrm{~V}$, FF fuse
Crest factor	For < 5:1 errors included. Limited by the peak input and 100 kHz bandwidth. Maximum 3.0 at full scale.
Peak input	300\% of range. Limited by maximum input.
Response time	Approximately 2.5 s when the displayed reading reaches $99.9 \% \mathrm{AC}$ rms value of the tested input signal at the same range.

Resistance

Measurement method	Two-wire, open-circuit voltage limited to $<5 \mathrm{~V}$
Open circuit voltage	$<+5.0 \mathrm{~V}_{\mathrm{dc}}$
Input protection	1000 Vrms on all ranges, $<0.3 \mathrm{~A}$ short circuit
Response time	Approximately 0.15 seconds for $1 \mathrm{M} \Omega$ and ranges below $1 \mathrm{M} \Omega$
Low-resistance	Four-wire; test current is sent from the FORCE terminals and resistance measured at the Measurement method SENSE terminals.
Input protection	- FORCE terminals: $3.15 \mathrm{~A} / 250 \mathrm{~V}$
	- SENSE terminals: $1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges, $<0.3 \mathrm{~A}$ short circuit

Continuity

Measurement method	$0.83 \mathrm{~mA} \pm 0.2 \%$ constant current source
Open circuit voltage	$<+5.0 \mathrm{~V}_{\mathrm{dc}}$
Audible tone	Continuous beeping when reading is less than the threshold resistance of 10Ω at $1.0 \mathrm{k} \Omega$ range
Input protection	$1000 \mathrm{~V}_{\mathrm{rms}}$ on all ranges, <0.3 A short circuit

Digital multimeter specifications (continued)

Supplementary specifications

Diode	
Measurement method	$0.83 \mathrm{~mA} \pm 0.2 \%$ constant current source
Open circuit voltage	$<+5.0 \mathrm{~V}_{\text {de }}$

Power supply specifications

Specification assumptions:

- Specifications stated are after 60 -minutes of warm-up with no load
- Operating temperature: $18{ }^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64.4^{\circ} \mathrm{F}\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Accuracy is expressed as $\pm(\%$ of output + offset $)$ at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
- Temperature coefficient: Add [$0.1 \times$ (the specified accuracy) $/{ }^{\circ} \mathrm{C}$] for $0{ }^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
- Relative humidity (RH) up to 80% at $30^{\circ} \mathrm{C}$, proportional to 50% for $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

DC power supply specifications

Output ratings	- Range S1: 0 V to $30 \mathrm{~V}, 0 \mathrm{~A}$ to 1 A - Range S2: 0 V to $8 \mathrm{~V}, 0 \mathrm{~A}$ to 3 A
Programming accuracy	- $0.05 \%+5 \mathrm{mV}$
1 year (@ $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$), \pm (\% of output + offset)	- $0.15 \%+3 \mathrm{~mA}$
Readback accuracy	- $0.05 \%+5 \mathrm{mV}$
1 year over GPIB and USB or front panel with respect to actual output (@ $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$), $\pm(\%$ of output + offset)	- $0.15 \%+3 \mathrm{~mA}$
Ripple and noise	- $<2 \mathrm{mV}_{\text {rms }}{ }^{\text {i }}<30 \mathrm{mV}$
With outputs ungrounded, or with either output terminal grounded, 20 Hz to $1 \mathrm{MHz}^{3}$	- <1 mA mms
Front terminal load regulation	- < $3 \mathrm{mV}{ }^{1}$
$\pm(\%$ of output + offset)	- $<0.03 \%+0.3 \mathrm{~mA}$
Rear terminal load regulation	- $<0.01 \%+3 \mathrm{mV}$
\pm (\% of output + offset)	- $<0.03 \%+0.3 \mathrm{~mA}$
Line regulation	Voltage: 3 mV
	Current: 1.5 mA
Programming resolution	$1 \mathrm{mV}, 0.1 \mathrm{~mA}$
Readback resolution	$1 \mathrm{mV}, 0.1 \mathrm{~mA}$
Front panel resolution	$1 \mathrm{mV}, 0.1 \mathrm{~mA}$
Transient response time	Less than 450 ms for output to recover to within 50 mV following a change in output current from full load to half load or vice versa
Command processing time	Average time for output voltage to begin to change after receipt of digital data when instrument is connected directly to the USB or GPIB is less than 100 ms
Overvoltage protection (for CC mode)	- Accuracy: $0.5 \%+0.5 \mathrm{~V}$ - Activation time ${ }^{2}:<2 \mathrm{~ms}$
Overcurrent protection (for CV mode)	- Accuracy: $0.5 \%+0.05 \mathrm{~A}$ - Activation time ${ }^{2}:<2 \mathrm{~ms}$
1. Contacts and leads resistance may contribute an additional error of $6 \mathrm{mV} / \mathrm{A}$ (typical).	
2. Average time for the detection of OVP or OCP condition.	
3. Refer to U3606A User's and Service Guide (U3606-90013); C	e effect measurement on page 166.

Power supply specifications (continued)

Sweep specifications

Function	Range	Amplitude ${ }^{1}$	Step	Dwelling time		
Scan	Constant voltage	$\mathrm{S} 1(30 \mathrm{~V} / 1 \mathrm{~A})$	0 to 31.500 V	1 step to 100 steps	1 s to 99 s	
		$\mathrm{~S} 2(8 \mathrm{~V} / 3 \mathrm{~A})$	0 to 8.4000 V			
	Constant current	$\mathrm{S} 1(30 \mathrm{~V} / 1 \mathrm{~A})$	0 to 1.0500 A	1 step to 100 steps	1 s to 99 s	
		$\mathrm{~S} 2(8 \mathrm{~V} / 3 \mathrm{~A})$	0 to 3.1500 A			
Ramp	Constant voltage	$\mathrm{S} 1(30 \mathrm{~V} / 1 \mathrm{~A})$	0 to 31.500 V	1 step to 10,000 steps	$300 \mathrm{~ms} /$ step (typical)	
		$\mathrm{S} 2(8 \mathrm{~V} / 3 \mathrm{~A})$	0 to 8.4000 V			
	Constant current	$\mathrm{S} 1(30 \mathrm{~V} / 1 \mathrm{~A})$	0 to 1.0500 A	1 step to 10,000 steps	$300 \mathrm{~ms} /$ step (typical)	
	$\mathrm{S} 2(8 \mathrm{~V} / 3 \mathrm{~A})$	0 to 3.1500 A				

1. Amplitude start position is fixed at 0 (V or A) by default.

Square-wave output specifications

Parameter	Range	Resolution	Accuracy
Frequency	$0.5,2,5,6,10,15,25,30,40,50,60,75,80,100,120,150$,	0.01 Hz	$0.005 \%+1$ count
	$200,240,300,400,480,600,800,1200,1600,2400,4800 \mathrm{~Hz}$		
Duty cycle	0.39% to 99.60%	$0.39 \%^{1}$	$0.4 \%^{1,2}$
Pulse width	$1 /$ frequency	Range/256	Duty cycle/frequency
Amplitude	S1 (30 V/1 A)	1 mV	0.2 V
	S2 (8 V/3 A)	1 mV	0.2 V

1. Specification applies when the positive or negative pulse width is greater than $50 \mu \mathrm{~s}$.
2. For frequency signals greater than 100 Hz , an additional 0.1% per 100 Hz is to be added.

$$
\text { Accuracy }=0.4 \%+\left(\frac{\text { frequency }}{100}-1\right) \times 0.1 \%
$$

3. The accuracy of pulse width could also be calculated as $[0.4 \%+(f r e q u e n c y / 100-1) \times 0.1 \%] /$ frequency.

Rise/fall time is less than 25μ s. Specifications are based on a resistive load.

Supplementary specifications

Output programing range			
Range	Output programming	OV/OC	OVP/OCP
s1	0 V to $31.500 \mathrm{~V} / 0 \mathrm{~A}$ to 1.05 A	$31.500 \mathrm{~V} / 1.05 \mathrm{~A}$	$33.000 \mathrm{~V} / 1.1 \mathrm{~A}$
S 2	0 V to $8.4 \mathrm{~V} / 0 \mathrm{~A}$ to 3.15 A	$8.4 \mathrm{~V} / 3.15 \mathrm{~A}$	$8.8 \mathrm{~V} / 3.3 \mathrm{~A}$

Remote sensing capability

Range S1 $(30 \mathrm{~V} / 1 \mathrm{~A})$	Up to a 0.75 -volt drop per load lead
Range S2 $(8 \mathrm{~V} / 3 \mathrm{~A})$	Up to a 0.5 -volt drop per load lead

Temperature coefficient: $\pm(\%$ of output + offset $) /{ }^{\circ} \mathrm{C}$ for $0^{\circ} \mathrm{C}$ to $18{ }^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

Voltage	$0.005 \%+0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Current	$0.02 \%+1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

Voltage programming speed (excludes command processing time)

Up

General characteristics

Power supply	- Universal $100 \mathrm{~V}_{\mathrm{ac}}$ to $240 \mathrm{~V}_{\mathrm{ac}} \pm 10 \%$ - AC line frequency 45 Hz to 66 Hz (360 Hz to 440 Hz for $100 / 120 \mathrm{~V}$ operation)
Power consumption	150 VA maximum
Current Input Fuse	$3.15 \mathrm{~A}, 500 \mathrm{~V}$ FF fuse (on front panel)
Display	Highly visible vacuum-fluorescent display (VFD)
Operating environment	- Operating temperature from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ - Relative humidity up to 80% at $30^{\circ} \mathrm{C}$ RH (non-condensing) - Altitude up to 2000 meters - Pollution degree 2 - For indoor use only
Storage compliance	$-40^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
Safety compliance	Certified with: - IEC 61010-1:2001/EN61010-1:2001 (2nd Edition) - Canada: CAN/CSA-C22.2 No. 61010-1-04 - USA: ANSI/UL 61010-1:2004
EMC compliance	Certified with: - IEC61326-1:2005 / EN61326-1:2006 - CISPR 11:2003 / EN55011:2007 (Group 1 Class A) - Canada: ICES/NMB-001:2004 - Australia/New Zealand: AS/NZS CISPR11:2004
Shock and vibration	Tested to IEC/EN 60068-2
Remote interface	- GPIB IEEE-488 - Full Speed USB 2.0 (Type B) - USBTMC 488.2 Class device - USB-CDC
Programming language	Standard Commands for Programmable Instruments (SCPI)
Measurement category	- CAT II, 300 V - CAT I, $1000 \mathrm{~V}_{\mathrm{dc}}{ }^{\prime} 750 \mathrm{~V}_{\mathrm{ac}} \mathrm{rms}$ - $2500 \mathrm{~V}_{\mathrm{pk}}$ transient over voltages
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)	$105 \times 255 \times 329 \mathrm{~mm}$ (with rubber bumpers) $87 \times 215 \times 312 \mathrm{~mm}$ (without rubber bumpers)
Weight	3.775 kg (with rubber bumpers) 3.535 kg (without rubber bumpers)
Warranty	One year
Calibration cycle	One year
Warm-up time	60 minutes

Ordering information

Standard shipped items

- Quick Start Guide
- Product Reference CD
- Agilent IO Library Suite
- Certificate of Calibration
- U8201A Combo Test Lead Kit
- USB 2.0 High-Speed Type-A to Type-B cable
- AC power cord

Warranty options

- R-51B-001-3C Extended warranty from one year to three years
- R-51B-001-5C Extended warranty from one year to five years

Optional accessories

U8201A Combo Test Lead Kit

34133A Precision Electronic Test Leads (for DMM function)

11059A Kelvin Probe Set and 11062A Kelvin Clip Set (for DMM function)

U3606A-1CM Rack Mount Kit

34330A Current Shunt (30 A) (for DMM function)

E3600A-100 Test Lead Kit (for DC power supply function)

U8202A Electronic Test Lead Kit (for DMM function)

34136A 40 kV high-voltage probe (for DMM function)

I/O connectivity options

For control via GPIB interface

- 82350B/82351A PCI/PCle high-performance GPIB interface card
- 82357B USB/GPIB converter
- E5810A LAN/GPIB gateway
- 10833D/A/B/C/F/G GPIB cables
- 10834A GPIB-to-GPIB adapter

For control via USB interface

- E5813A networked 5-port USB hub

www.agilent.com

www.agilent.com/find/hybrid-multimeter

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

AKie

www.axiestandard.org
AdvancedTCA ${ }^{\circledR}$ Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA ${ }^{\circledR}$ for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

LxI

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

קK゙

http://www.pxisa.org
PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC -based highperformance measurement and automation system.

Agilent Channel Partners

uww.agilent.com/find/channelpartners
Get the best of both worlds: Agilent's
measurement expertise and product
breadth, combined with channel partner convenience.

1S0 9001:2008
www.agilent.com/quality

For more information on Agilent
Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973500$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted Countries:
www.agilent.com/find/contactus
Revised: October 14, 2010
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2011
Printed in USA, April 4, 2011
5990-3971EN

