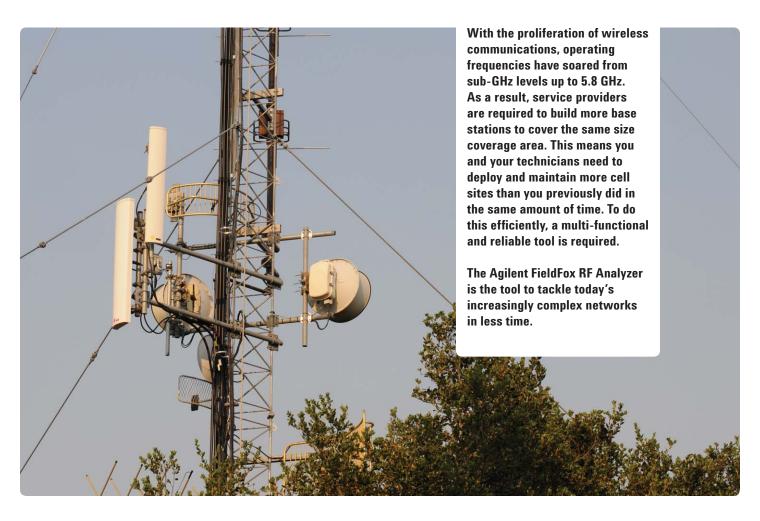
Agilent FieldFox RF Analyzer N9912A 4/6 GHz


Technical Overview

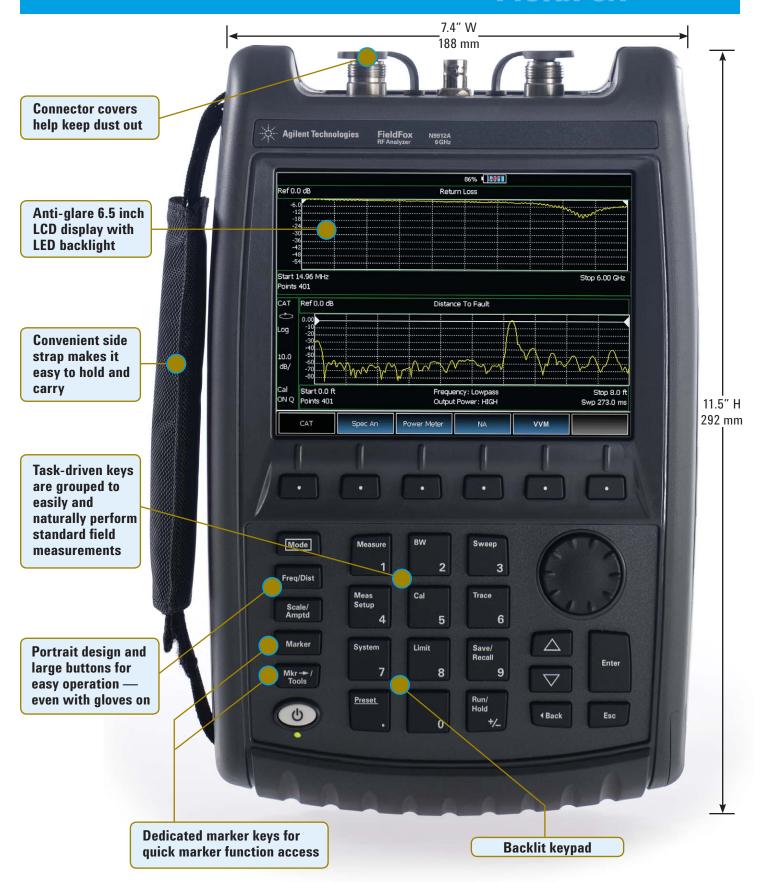
Tackle Complex Networks in Less Time

FieldFox

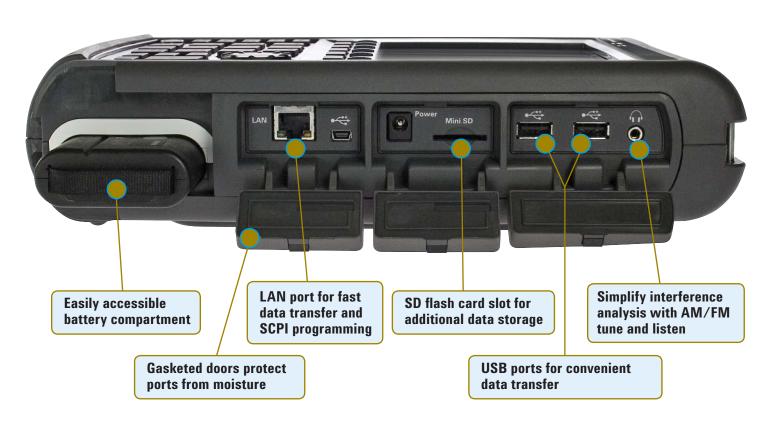
World's Most Integrated Handheld RF Analyzer

Key measurements

- Cable and antenna test, distance-to fault, return loss, cable loss
- Vector network analysis with Smith chart display
- Vector voltmeter
- Spectrum analyzer, CHP, ACPR, OBW
- Interference analyzer, spectrogram, waterfall, record and playback
- Independent source
- Power meter

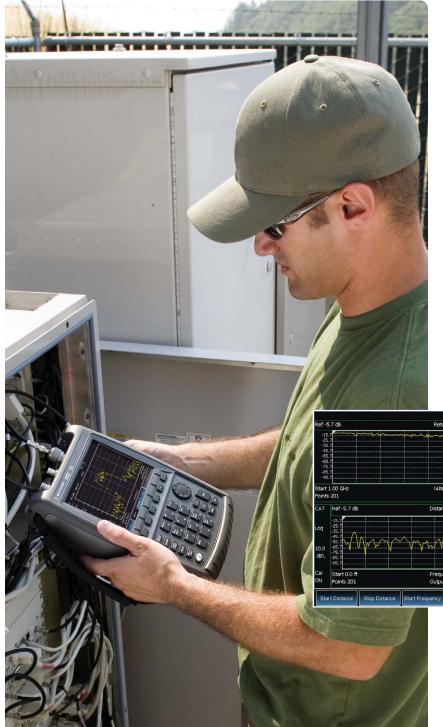

Key differentiators

- Integrated QuickCal calibrates without a calibration kit
- Immediate calibration with CalReady
- 50 percent faster than traditional handheld instruments
- Superior dynamic range (96 dB) and sensitivity (-148 dBm) in the spectrum analysis mode
- Easy-to-use, task-driven user interface

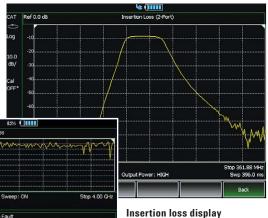

Cable and antenna analyzer Vector network analyzer	2 MHz to 4/6 GHz
Spectrum analyzer	100 kHz* to 4/6 GHz *Useable to 5 kHz
Signal source	2 MHz to 4/6 GHz

Task-driven Features

FieldFox



Key Measurements


FieldFox

Cable and antenna analyzer

Fifty to sixty percent of cell site problems are caused by faulty cables, connectors, and antennas. Degraded feed lines cause poor coverage, unnecessary handovers, paging failures, and access failures on uplink. To avoid service quality problems, it is critical to keep cell sites' cable and antenna systems in good condition.

Use FieldFox to make return loss, VSWR, insertion loss/transmission, one-port cable loss, and distance to fault (DTF) measurements. You can test antennas, cables, filters, and amplifiers with a single instrument.

Return loss and DTF dual display

Return loss and DTF measurements

FieldFox can make both return loss and distance to fault measurements at the same time. This helps you correlate overall system degradation with specific faults in the cable and antenna system.

The built-in cable editor allows you to edit existing cable types on-site, and save them as new cable types with user defined names.

Measurements in the field without the need to manually calibrate

Each instrument is *CalReady* at the RF Out port, immediately following power-on or preset. This means it's already calibrated and ready to make accurate measurements such as one-port cable loss, VSWR, return loss, and DTF measurements at the test port.

Performing Calibration... 100%

Calibration Wizard

Industry's first and only QuickCal

The industry's first and only built-in calibration system allows you to calibrate the cable/antenna tester without carrying a calibration kit into the field. As with any test instrument, when you add an additional device to the test port, such as a jumper cable or attenuator, you need to calibrate using a calibration kit (cal kit). *QuickCal* eliminates the hassle of carrying and using a cal kit, plus provides worry-free accuracy and excellent repeatability every time.

Spectrum analyzer display

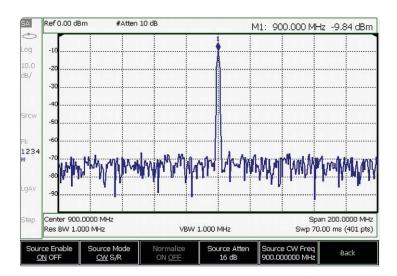
Interference hunting

Broadband calibration

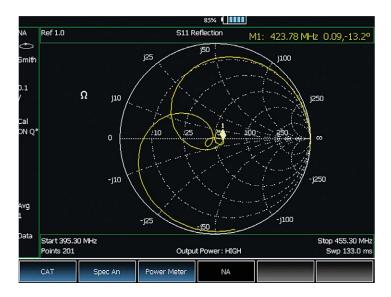
FieldFox allows you to make broadband calibrations, which means the instrument is calibrated over the maximum frequency span. After a broadband calibration, you can change the frequency range or number of points without recalibrating the instrument.

Built-in spectrum analyzer

Interference is a major source of cell site problems. Interference can be internal or external, and uplink or downlink. Downlink interference reduces coverage, while uplink interference causes access failure. Interference has a direct impact on the quality of service of wireless communication services.


FieldFox has an optional built-in spectrum analyzer that covers frequency ranges from 5 kHz to 6 GHz. It provides a fast spectrum scan to detect interference and RF burst capture to measure intermittent signals. It displays four traces at the same time, and you can choose different detector modes.

Interference analyzer


FieldFox interference analyzer is designed for identifying interference signals quickly in the field. It has the best dynamic range on the market (96 dB) with very fast sweep times under narrow resolution bandwidths (RBWs).

FieldFox provides a spectrogram and waterfall display to detect intermittent interference signals or monitor signals of interest for longer periods of time. Signal traces can be recorded into internal memory or external flash memory devices, the saved traces can be played back for offline processing.

FieldFox also allows you to listen to demodulated AM/FM signals to identify signal types.

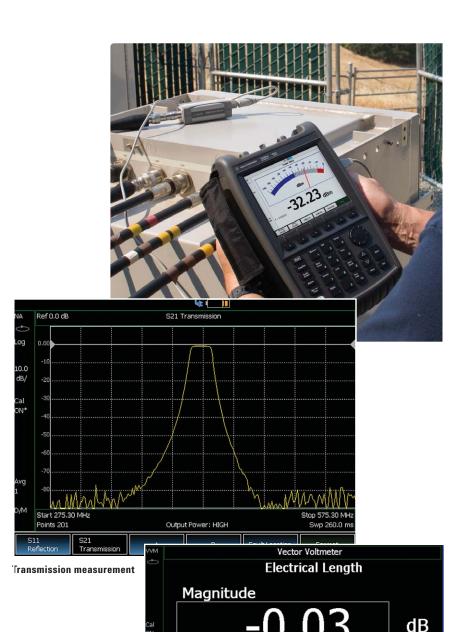
FieldFox's Independent CW signal source

Device input impedance displayed on a Smith chart

Independent signal source

FieldFox has a built-in independent signal source, with a frequency range of 2 MHz to 4/6 GHz. The signal source and spectrum analyzer can be on at the same time. The signal source can be tuned to any frequency, independent of the spectrum analyzer frequency.

The signal source can be used to create a test signal to measure coverage, antenna isolation, antenna direction alignment, frequency offset device verification, and long cable loss measurement.


FieldFox's source can generate both a CW signal and a swept frequency signal, similar to a traditional tracking generator. This feature is standard on FieldFox RF analyzers with spectrum analyzer Options 230 or 231.

Network analysis

FieldFox has an optional network analyzer mode that provides standard vector network analyzer measurements such as S11, S11 phase, a Smith chart display, polar display, and S21 magnitude (requires Option 110).

For in-fixture measurements, use FieldFox's port extension or electrical delay capability to easily extend the reference plane to the device interface to provide accurate measurements. You can use the electrical delay capability to measure deviation from linear phase by removing the linear portion of the phase delay.

If you need to measure the magnitude and phase of all four S-parameters, consider the N9923A FieldFox RF VNA. Please refer to Agilent FieldFox RF Vector Network Analyzer, literature part number 5990-5087EN.

Power meter

FieldFox can connect with the Agilent U2000 Series USB power sensor to make RF/microwave power measurements up to 24 GHz.

FieldFox provides true average power measurements with a wide dynamic range from -60 dBm to +44 dBm. The sensor has an internal zeroing function, and external calibration is not needed.

Transmission measurement

FieldFox provides a 2-port transmission measurement that measures insertion loss, amplifier gain, filter passband, and loss. It also makes a S21 scalar measurement if Option 303 is enabled.

Vector voltmeter

Using FieldFox's vector voltmeter (VVM), the phase shift and electrical length of a device can be measured.

By utilizing the "Zero" function, the phase and electrical length of one device can be measured relative to a "golden device". View results on the large display which can be seen as far as ten feet away. Since every FieldFox is CalReady, no calibration is needed if VVM measurements are done at the test port.

FieldFox offers much of the VVM functionality of the popular HP/Agilent 8508A, in a handheld portable form factor, and without the need for the source/bridge/accessories required with the 8508A.

VVM applications:

Phase

2.00 MHz

- Cable trimming of phase matched cables
- Verifying the isolation of 2-port components
- Radio navigation VHF omnidirectional radio range (VOR) and instrumentation landing system (ILS)

Deg

More

Feature and Benefit Summary

FieldFox

Perform and view return loss and distance to fault measurements at the same time

Locate interference signals

Waterfall display

Channel power measurement

Comprehensive measurement capabilities

Cable and antenna test

- Return loss, VSWR
- · Distance to fault

Return loss/VSWR measurements allow you to evaluate the impedance matching performance of the feed line across the frequency range of interest.

Distance to fault measurements help you identify the faults along a feed line. Use these measurements to precisely pinpoint the location of damaged or degraded antennas, connectors, amplifiers, filters, and duplexers, etc.

FieldFox provides up to 1001 data-point resolution to help accurately locate faults and extend measurement distance.

Transmission test

- Cable loss
- Insertion loss
- · Amplifier gain

Transmission test is used to accurately measure cable loss, insertion loss (filters), and amplifier gain (tower mounted amplifier). FieldFox offers two-port transmission magnitude measurements with up to 72 dB dynamic range.

One-port cable loss

For already-installed cables, FieldFox accurately measures cable loss via the RF Out port. The instrument measures actual cable loss, without the need for additional computation.

CalReady at test port

Each instrument is calibrated at the RF Out port. When you power up the instrument, it is ready to make accurate measurements such as one-port cable loss, VSWR, return loss, and DTF at the test port.

QuickCal

The industry's-first and only built-in calibration system allows you to calibrate the cable and antenna tester without carrying a calibration kit with you all the time. It provides worry-free accuracy and excellent repeatability. *QuickCal* also corrects drift errors caused by temperature changes during instrument operation.

Mechanical calibration

Open-short-load (OSL) is standard in FieldFox. There are four calibration kits defined in the instrument.

Spectrum analysis

The built-in spectrum analyzer allows you to scan up to 6 GHz and detect internal and external interference. FieldFox can detect signals as low as -148 dBm up to 6 GHz, with phase noise of -88 dBc at 10 kHz, and a third order intercept (TOI) better than +18 dBm.

Interference analyzer

Spectrogram and waterfall displays allow you to detect and monitor intermittent interference signals. The interested signals can be recorded and played back.

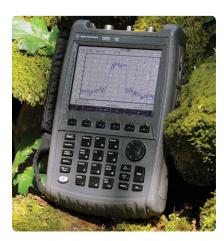
Independent signal source

Provides a test signal to measure coverage, antenna isolation, long cable loss, verify frequency offset device, and align antenna direction.

Power suite measurements

Built-in spectrum analyzer provides one-button power suite measurements such as; channel power, ACPR and OBW for LTE, WiMAX, WCDMA, TD-SCDMA, cdma2000 and GSM measurements.

AM/FM tune and listen


The built-in spectrum analyzer can demodulate AM/FM modulated signals and play the audio via speaker or headset. This feature is very useful to identify types of signals.

Agent Inches agent Printing agent GBM -32.22 dBm

Make accurate true average power measurements without bringing along a power meter

Transflective display makes it easy to read measurements in direct sunlight

Water resistant chassis withstands wide temperature ranges and humid environments

Comprehensive i	Comprehensive measurement capabilities continued		
Power meter	Makes accurate true average power measurements without bringing a power meter along. The state-of-the-art Agilent USB power sensors provide measurements up to 24 GHz.		
Smith chart	Smith charts can be used to display impedance matching characteristics in cable and antenna systems.		
Vector voltmeter	The large vector voltmeter display makes it easy to match two or more device's electric length and ensure signals that travel on different devices have the same delay.		
Electrical delay	Using the electrical delay function, you can remove the linear portion of the phase shift and view the deviation from linear phase.		
Port extension	Allows you to extend the reference plan after calibration. This feature is useful for measurements such as in-fixture test,		

	where calibrating at the DUT or reference plane is cumbersome.		
Field-proof usability			
Transflective display and backlit keys	The display is designed for easy viewing in indoor and outdoor settings and in direct sunlight and darkness. Access different display modes via softkeys.		
Task-driven key design	Front-panel keys are grouped to easily and naturally perform standard field measurements.		
Speaker and headphone jack	Used for future demodulated audio signal capability.		
One-button measurement	Provides task-driven user interface to simplify the measurements.		
Rugged design			
Water-resistant chassis, keypad and case design	The case is made from polycarbonates that withstand wide temperature ranges and salty, humid environments.		

Ruggea aesign		
Water-resistant chassis, keypad and case design	The case is made from polycarbonates that withstand wide temperature ranges and salty, humid environments.	
RF connector protection	A specially designed connector bay protects the RF connectors from damage during drops or other external impacts.	
Dust-free design	With no vents or fans in the case, ${\sf FieldFox}\ {\sf resists}\ {\sf dust}\ {\sf for}\ {\sf better}\ {\sf equipment}\ {\sf reliability}.$	
Meets tough environ- mental standard	Meets MIL-PRF-28800F Class 2 specification.	
Gasketed doors	Protects instrument interface from moisture.	
Modern connectivity		

USB 2.0 ports	Two USB 2.0 ports can be used to transfer files.
LAN port	Used to transfer data in and out of the instrument. Used for SCPI control, and also to transfer data in and out of the instrument.
SD flash card slot	Use as a data storage device.
FieldFox Data Link software	Transfer data remotely from the instrument to a PC for back-office applications such as baseline analysis and report generation.

Specifications

FieldFox

A condensed version of the specifications is provided here. See the User's Guide for the complete version; http://cp.literature.agilent.com/litweb/pdf/N9912-90001.pdf

Specification (spec.):

Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. The following conditions must be met:

- FieldFox has been turned on at least 10 minutes (unless otherwise stated)
- FieldFox is within its calibration cycle
- Storage or operation at 25 °C ±5 °C range (unless otherwise stated)

Typical (typ.):

Expected performance of an average unit over a 20 °C to 30 °C temperature range, unless otherwise indicated; does not include guardbands. It is not covered by the product warranty. The FieldFox must be within its calibration cycle.

Nominal (nom.):

A general, descriptive term or design parameter. It is not tested, and not covered by the product warranty.

Cable and antenna analyzer (Option 104 or 106)

Frequency

-							
Fre	am	ene	CV	ra	n	ш	Δ.
	qu.	GIII	.	ı u	ш		•

Option 104 2 MHz¹ to 4 GHz **Option 106** 2 MHz² to 6 GHz

Frequency reference

Accuracy ±2 ppm Aging rate ±1 ppm/yr

Temperature stability ±1 ppm over -10 to 55 °C

Frequency resolution

2 MHz to 1.6 GHz 2.5 kHz > 1.6 GHz to 3.2 GHz 5 kHz > 3.2 GHz to 6 GHz 10 kHz

Measurement speed

Return loss 1.5 ms/point (nominal) 1.75 GHz to 3.85 GHz, 1001 points, Cal ON

Distance to fault 2.4 ms/point (nominal) 0 to 500 ft, 601 points, Cal ON

Data points

101, 201, 401, 601, 801, 1001

Directivity

Corrected > 42 dB

QuickCal (Option 111) > 42 dB (typical)³

Source match

Corrected > 36 dB

QuickCal (Option 111) $\geq 35 \text{ dB (typical)}^3$

Reflection tracking

Corrected $\pm 0.06 \text{ dB}$

QuickCal (Option 111) ± 0.15 dB (typical) ³

^{1.} Spectrum analyzer (Option 230) start frequency is 100 kHz, usable to 5 kHz.

^{2.} Spectrum analyzer (Option 231) start frequency is 100 kHz, usable to 5 kHz.

^{3.} Requires 90 minute warm up

Dynamic range

Reflection (RF Out port)

2 MHz to 4 GHz 60 dB (typical) > **4 GHz to 6 GHz** 55 dB (typical)

Transmission measurement (Option 110)

2 MHz to 2 GHz 72 dB (typical) > 2 GHz to 3 GHz 67 dB (typical) > 3 GHz to 5 GHz 58 dB (typical) > 5 GHz to 6 GHz 49 dB (typical)

Output power range

High power

2 MHz to 4 GHz < +8 dBm, +6 dBm (nominal) > 4 GHz to 6 GHz < +7 dBm, +2 dBm (nominal)

Low power

2 MHz to 4 GHz < -23 dBm, -25 dBm (nominal) > **4 GHz to 6 GHz** < -24 dBm, -29 dBm (nominal)

Immunity to interference

+16 dBm (nominal)

Maximum input level (RF Out port)

+23 dBm

Maximum input DC voltage (RF Out port)

±50 VDC

Cable and antenna measurements

Return loss

Display range 0 to 100 dB **Resolution** 0.01 dB

VSWR

Display range 0 to 100 **Resolution** 0.01

Distance to fault (DTF)

• Range = (number of points - 1)/(span*2) x Vf (velocity factor in cable) x c (light speed)

• **Resolution** = range/(number of points - 1)

• Number of points: 101, 201, 401, 601, 801, 1001, reflection coefficient

· Distance to fault display: Return loss, VSWR

Cable loss (1-port)

Terminated cable under test with short

Insertion loss (2-ports)

Requires Option 110

Transmission measurement (Option 110)

Frequency range

Option 104 2 MHz to 4 GHz **Option 106** 2 MHz to 6 GHz

Dynamic range

 2 MHz to 2 GHz
 72 dB (typical)

 2 GHz to 3 GHz
 67 dB (typical)

 > 3 GHz to 5 GHz
 58 dB (typical)

 > 5 GHz to 6 GHz
 49 dB (typical)

Network analysis (Option 303)

S11 Vector measurement, S11 magnitude and S11 phase. Specification is listed under Cable and antenna analyzer section (S11/Return loss).

Scalar measurement, S21 magnitude. Specification is listed under transmission measurement. S21 requires Option 110 transmission measurement.

A Reflected power

R Source power

Display Log, linear, phase, VSWR, Smith chart, polar, group delay

Calibration types

Mechanical cal

QuickCal

Normalization

Automatic cal update with frequency change or number of points change

IF bandwidth selections

300 Hz, 1 kHz, 3 kHz, 10 kHz and 30 kHz

Spectrum analyzer (Option 230 or 231)

Frequency

_						
Fr	anıı	ın	CV	ra	na	Δ

Option 104 100 kHz to 4 GHz, usable to 5 kHz

Option 106 100 kHz to 6 GHz, usable to 5 kHz, tunable to 6.1 GHz

Frequency reference

Accuracy ±2 ppm

Frequency aging $\pm 1 \text{ ppm/yr}$

Frequency reference

Temperature stability ± 1 ppm over -10 to 55 °C

Frequency readout accuracy

± (readout frequency x frequency reference accuracy + RBW centering + 0.5 x horizontal

resolution)

Frequency span

Range 0 Hz (zero span), 10 Hz to maximum frequency

Span accuracy $\pm (2 \times RBW \text{ centering + horizontal resolution})$

Span resolution 1 Hz

Resolution bandwidth (RBW)

Range (-3 dB bandwidth)

Zero span 300 Hz to 1 MHz in 1-3-10 sequence; 2 MHz

Non-zero span 10 Hz to 300 kHz in 1/1.5/2/3/5/7.5/10 sequence; 1 MHz, 2 MHz

Accuracy

1 kHz to 1 MHz: ± 5% (nominal)

10 Hz to 100 KHz non-zero span: ± 1% (nominal)

2 MHz: ± 10% (nominal)

300 Hz zero span: ± 10% (nominal)

Selectivity (-60 dB/ -3 dB) 4:1 (nominal)

Video bandwidth (VBW)

Range 1 Hz to 2 MHz in 1/1.5/2/3/5/7.5/10 sequence

Stability

Noise sidebands, CF = 1 GHz

10 kHz offset: -88 dBc/Hz (typical) 30 kHz offset: -89 dBc/Hz, (typical) 100 kHz offset: -95 dBc/Hz, (typical) 1 MHz offset: -115 dBc/Hz, (typical)

Sweep acquisition, span > 0 Hz

Range 1 to 5000, number of data acquisitions per trace point; value is normalized to the minimum

required to achieve amplitude accuracy with CW signals

Resolution

Readout Measured value representing time required to tune receiver, acquire data, and process trace

Trace updates

Span = 20 MHz, RBW = 3 kHz: 1.5 updates/second
Span = 100 MHz, RBW auto coupled: 7 updates/second
Span = 6 GHz, RBW auto coupled: 1 update/second

Trace points

101, 201, 401, 601, 801, 1001 points, default is 401

Amplitude

Measurement range

Displayed average noise level (DANL) to +20 dBm

Input attenuator range

0 to 31 dB, 1 dB steps

Maximum DC voltage at RF In port

±50 VDC

Maximum input power at RF In port

+27 dBm (0.5 W)

Displayed average noise level (DANL)

10 Hz RBW, 10 Hz VBW, 50 ohm termination on input, 0 dB attenuation, average detector

Preamplifier OFF

20 to 30 °C

10 MHz to 2.4 GHz -130 dBm (typical) > 2.4 GHz to 5.0 GHz -125 dBm (typical) > 5.0 GHz to 6.0 GHz -119 dBm (typical)

Preamplifier ON (Option 235)

20 to 30 °C

10 MHz to 2.4 GHz -148 dBm (typical)
> 2.4 GHz to 5.0 GHz -145 dBm (typical)
> 5.0 GHz to 6.0 GHz -138 dBm (typical)

-10 to 55 °C

10 MHz to 2.4 GHz < -141 dBm

> 2.4 GHz to 5 GHz < -141 dBm > 2.4 GHz to 5 GHz < -138 dBm > 5 GHz to 6 GHz < -130 dBm

Total absolute amplitude accuracy¹

 $Peak\ detector,\ 10\ dB\ attenuation,\ preamplifier\ off,\ RBW<2\ MHz,\ input\ signal\ 0\ dBm\ to\ -50\ dBm,\ all\ settings\ auto-coupled$

20 to 30 °C

Second harmonic distortion (SHI)

-30 dBm signal at input mixer

2 MHz to 1.35 GHz < -70 dBc, +40 dBm SHI (nominal) 1.35 GHz to 3.0 GHz < -80 dBc, +50 dBm SHI (nominal)

^{1.} Requires 90 minute warm up

Third order intermodulation distortion (TOI)

Two -30 dBm tones at input mixer, > 100 kHz tone separation

< -96 dBc, +18 dBm TOI (nominal)

Residual responses

Input terminated, 0 dB attenuation, preamplifier off, RBW ≤ 1 kHz, VBW auto-coupled

20 MHz to 3 GHz -90 dBm (nominal) > 3 GHz to 6 GHz -85 dBm (nominal)

Spurious responses

Input mixer level -30 dBm

RFsig = RFtune + 417 MHz -70 dBc (nominal) RFsig = RFtune + 1.716 GHz -80 dBc (nominal)

Input mixer level -10 dBm, first IF image response

 $RFsig = RFtune - 2 \times 0.8346 GHz$,

for RFtune 5.7 to 6.0 GHz -50 dBc (nominal)

Sidebands -80 dBc (nominal)

-60 dBc (nominal) when battery charging, 260 kHz offset

Preamplifier (Option 235 requires Option 230 or 231)

 Option 230
 100 kHz to 4 GHz

 Option 231
 100 kHz to 6 GHz

 Gain
 22 dB (nominal)

Reference level

Range -170 dBm to +30 dBm

Resolution 0.1 dB

Accuracy 0 dB (no error)

Traces

4 traces, data/max/average/min

Detectors

Normal, positive peak, negative peak, sample, average

Markers

Marker types Normal, noise marker

Number of markers or

delta markers

Marker functions Peak, next peak, peak left, peak right, marker to center, minimum search

RF In VSWR

1.5:1 (50 ohm)

Trigger

External, video trigger, FFT gating with video (IF envelope) trigger

Independent signal source

Frequency range

2 MHz to 4 GHz (Option 230) or 2 MHz to 6 GHz (Option 231)

Amplitude

High power 2 MHz to 4 GHz < +8 dBm, +6 dBm (nominal)

Low power 2 MHz to 4 GHz <-23 dBm, -25 dBm (nominal)

>4 GHz to 6 GHz <+7 dBm, +2 dBm (nominal)

>4 GHz to 6 GHz < -24 dBm, -29 dBm (nominal)

Attenuation 0 to 31 dB

Functions Continuous wave, stimulus / response

Power meter measurement (Option 302)

Frequency range

9 kHz to 24 GHz (sensor dependent)

USB power sensor

9 kHz to 24 GHz, see Agilent U2000 Series USB power sensor specifications for details

General specifications

Connector type

Type-N (female)

Input impedance

50 ohm

External reference

Input type BNC female

Reference frequency 10 MHz

Required level -5 dBm to 10 dBm

Display

6.5" transflective, color VGA LED backlit 640 x 480 with anti-glare coating

Speaker

Built-in speaker

Headphone jack

Built-in headphone jack

Connectivity

2 x USB 2.0; 1 x mini USB; 1 x LAN

Internal storage

Minimum 16 MB, up to 1000 traces

External storage

1 x mini SD slot and 2 x USB 2.0

EMC

Complies with European EMC Directive 2004/108/EC

■ IEC/EN 61326-2-1)

CISPR Pub 11 Group 1, Class A

AS/NZS CISPR 11

■ ICES/NMB-001

20

ESD • IEC/EN 61000-4-2, functional up to 20 kV test **Safety** Complies with European Low Voltage Directive 2006/95/EC • IEC/EN 61010-1 2nd Edition · Canada: CSA C22.2 No. 61010-1-04 • USA: UL 61010-1 2nd Edition **Environmental** Meets MIL-PRF-28800F Class 2 specification **Humidity** 95% at 40 °C **Temperature** -10 °C to +55 °C **Operating** Non-operating -51 °C to 71 °C Weight 6.2 lbs / 2.8 kg including battery Dimensions (H x W x D) 11.5" x 7.4" x 2.8" (292 x 188 x 72 mm) **Power** External DC input: 15 to 19 VDC **Power supply External AC power adapter** 100 to 250 VAC, 50 to 60 Hz; 1.25 to 0.56 A Input 15 VDC, 4 A Output 12 W **Power consumption Battery** 6 cell Lithium Ion, 10.8 V, 4.6 A-h **Battery operating time** 4 hours Languages

English, Chinese, French, Spanish, Japanese, Russian, German, and Italian

Configuration Information

FieldFox

N9912A FieldFox RF analyzer

FieldFox RF Analyzer base functions: One port cable and antenna analyzer (4 GHz), broadband calibration, CalReady, standard

mechanical cal kit support. Measurements include: return loss, distance to fault (DTF),

one port cable loss and VSWR.

Standard accessories included N9912A: AC/DC adapter; battery; soft carrying case comes with backpack and shoulder straps;

Quick Reference Guide; User's Guide

N9912A FieldFox Options

Option 104	4 GHz cable and antenna analyzer
Option 106	6 GHz cable and antenna analyzer
Option 110	Transmission measurement
Option 111	QuickCal
Option 230	4 GHz spectrum analyzer (requires Option 104)
Option 231	6 GHz spectrum analyzer (requires Option 106)
Option 235	Preamplifier for spectrum analyzer (requires Option 230 or 231)
Option 236	Interference analyzer
Option 302	External USB power sensor support
Option 303	Network analysis capability
Option 308	Vector voltmeter

N9912A upgrades

The following upgrades are available for the N9912A FieldFox RF Analyzer. More information regarding upgrades is available at: http://na.tm.agilent.com/fieldfox

Product number before upgrade	Description	Required Options before upgrade
N9912AU-110	Add transmission measurement capability. Allows use of second port in NA and CAT modes.	None
N9912AU-111	Add QuickCal	None
N9912AU-230	Add 4 GHz spectrum analyzer. May only be installed on 4 GHz instrument.	4 GHz unit only, Option 104
N9912AU-231	Add 6 GHz spectrum analyzer. May only be installed on 6 GHz instrument.	6 GHz unit only, Option 106
N9912AU-235	Add preamplifier to spectrum analyzer	Spectrum analyzer Option, 230 or 231
N9912AU-236	Add interference analyzer	Spectrum analyzer Option, 230 or 231
N9912AU-302	Add external USB power sensor support	None
N9912AU-303	Add network analyzer capability; one port only. For second port, add Option 110.	None
N9912AU-308	Vector voltmeter	None

Configuration Information

FieldFox

N9910X RF/MW han	dheld analyzer accessories
N9910X-800	T-Calibration Kit, DC-6 GHz, Type-N(m)
N9910X-801	T-Calibration Kit, DC-6 GHz, Type-N(f)
N9910X-802	T-Calibration Kit, DC-6 GHz, 7/16 DIN(m)
N9910X-803	T-Calibration Kit, DC-6 GHz, 7/16 DIN(iii)
14001074-000	1-dailblation Kit, Do-d GH2, 17 to DHV(1)
N9910X-810	Rugged phase stable cable, Type-N(m) to Type-N(m), 5 ft
N9910X-811	Rugged phase stable cable, Type-N(m) to Type-N(f), 5 ft
N9910X-812	Rugged phase stable cable, Type-N(m) to Type-N(m), 12 ft
N9910X-813	Rugged phase stable cable, Type-N(m) to Type-N(f), 12 ft
N9910X-814	Rugged phase stable cable, Type-N(m) to 7/16 (m), 5 ft
N9910X-815	Rugged phase stable cable, Type-N(m) to 7/16 (m), 12 ft
N9910X-816	Rugged phase stable cable, Type-N(m) to Type-N (f), 3.28 ft
N9910X-817	Rugged phase stable cable, Type-N(m) to Type-N (m), 3.28 ft
N9910X-820	Antenna, directional, multiband, 800 to 2500 MHz, 10 dBi
N9910X-821	Antenna, telescopic whip, 70 MHz to 1 GHz
N9910X-843	Coaxial adapter, Type-N(m) to 7/16 DIN(f)
N9910X-845	Adapter kit: Type-N(f) to 7/16 DIN(f), Type-N(f) to 7/16 DIN(m), Type-N(f) to Type-N(f)
N9910X-860	Fixed attenuator, 40 dB, 100 W, DC-3 GHz, Type-N(n) to Type-N(f)
N9910X-861	Fixed attenuator, 40 dB, 700 W, DC-3 GHz, Type-N(m) to Type-N(f)
1400107-001	Tixed attendator, 40 db, 50 vv, bb-0.5 df12, Type-1v(iii) to Type-1v(i)
N9910X-870	Extra battery
N9910X-872	External battery charger
N9910X-873	AC/DC adapter
N9910X-874	External bias-tee, 2.5 MHz to 6 GHz, 1 W, 0.5 A
N9910X-875	DC car charger and adapter
N9910X-880	Extra soft carrying case with backpack and shoulder strap
N9910X-881	Hard transit case
N9910X-884	Extra N9912A shoulder strap

For more information go to: www.agilent.com/find/fieldfox

Configuration Information

FieldFox

Soft carrying case with backpack and shoulder straps included with a standard N9912A.

For an extra soft carrying case order N9910X-880

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Channel Partners

www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent's
measurement expertise and product
breadth, combined with channel
partner convenience.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com/find/fieldfox www.agilent.com/find/im_forum

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 9276201

For other unlisted Countries: www.agilent.com/find/contactus

Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008-2010 Printed in USA, November 5, 2010 5989-8618EN

