
$\mathcal{R}.\mathcal{F}.$ Solutions ... FM Radio Transmitter & Receiver Modules T5 / R5

Features

- MINIATURE SIL PACKAGE
- FULLY SHIELDED
- DATA RATES UP TO 128KBITS/S
- RANGE UPTO 300 METRES
- SINGLE SUPPLY VOLTAGE
- INDUSTRY PIN COMPATIBLE

QFMT5-434

- TEMP RANGE -20°C to +55°C
- NO ADJUSTABLE COMPONENTS
- GOOD SHOCK RESISTANCE
- TEMPERATURE COMPENSATED RF
 OUTPUT

Applications

- VEHICLE ALARM SYSTEMS
- REMOTE GATE CONTROLS
- GARAGE DOOR OPENERS
- DOMESTIC AND COMMERCIAL SECURITY

General Description

The QFMT5 and QFMR5 data link modules are miniature UHF radio modules, which enable the implementation of a simple telemetry link upto 300 metres, and at data rates of up to 128Kbit/s

The QFMT5 and QFMR5 modules will suit one-toone and multi-node wireless links in applications including building and car security, remote industrial process monitoring and computer networking.

QFMR5-434

- HIGH SENSITIVTY
- ANALLOUGE, DIGITAL OUTPUTS
- SIGNAL STRENGTH OUTPUT (RSSI)
- ON BOARD AGC
- SINGLE CONVERSION FM SUPER-HET
- DOUBLE RF FILTERING (INC. SAW FRONT END)

Because of its small size and low power requirements, these modules are ideal for use in portable battery powered wireless applications.

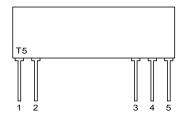


Figure 1: Transmitter

Pin Description:

RF GND (pin 1)

RF ground pin, internally connected to pin 4 (0V). This pin should ideally be connected to the nearest ground plane (e.g. coax braid, main PCB ground plane etc.)

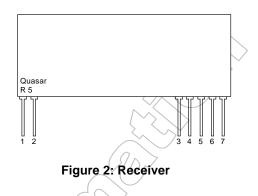
RF OUT (pin2)

 50Ω RF antenna output. To achieve best results the antenna impedance must match that of the module.

V_{cc} (pin 3)

+Ve supply pin (3.0 to 9.0 volts). The module will generate RF when V_{CC} is present. It is strongly recommended that a 100nF capacitor decouples the supply rail as close as possible to this pin.

GND (pin 4)


Supply and data ground connection, connected to pin 1.

Data IN (pin 5)

This input has an impedance of $47K\Omega$ and should ideally be driven by a CMOS logic drive or compatible. The drive circuitry should be supplied with the same supply voltage as the Tx module.

Ordering Information:

Part No	Description
QFMT5-434-5V	Transmitter 433.92MHz 5v
QFMT5-434-3V	Transmitter 433.92MHz 3v
QFMT5-434-128	Transmitter 433.92MHz 5v
\sim	128Kbps Data rate

RF IN (pin 1)

50 RF input from antenna, connect using shortest possible route. This input is isolated from the internal circuit using the air gap of the front end SAW RF filter

RF GND (pin 2)

RF ground connection, preferable connected to a solid plane.

RSSI (pin 3)

The Received Signal Strength Indicator provides a DC output voltage proportional to the RF input signal. The amplitude of the RSSI voltage increases with increasing RF signal strength.

GND (pin 4)

Connect to power supply ground.

V_{cc} (pin 5)

+Ve supply pin. Operation from a 5V supply able to source6mA at less than V_{p-p} ripple.

AF (pin 6)

Audio frequency output.

DATA OUT (pin 7)

CMOS compatible output. This may be used to drive external decoders.

Part No	Description		
QFMR5-434-15	Receiver 433.92MHz		
	15Kbps Data rate		
QFMR5-434-50	Receiver 433.92MHz		
	50Kbps Data rate		
QFMR5-434-128	Receiver 433.92MHz		
	128Kbps Data rate		

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings: Transmitter QFMT5

Operating temperature: Storage temperature:

Supply Voltage (pin 3) Data input (pin 5) RF Out (pin 2) -20°C to +55°C -40°C to +100°C

10V

10V

 $\pm 50 V @ < 10 MHz$, +20dBm @ > 10MHz

Electrical Characteristics: Transmitter T5

		\land					
	pin	Min.	typ.	Max,	units	notes	
DC LEVELS			$\langle \rangle$				
Supply voltage	3	4.5	5,0	5.5	Volts		
			\wedge (\bigcirc)			
Current & RF POWER		(/			
			$\langle \rangle$				
433.92 MHz							
Supply current @ $V_{CC} = 5V$	3	\sim	\geq	12	mA	1	
RF power	2	$\langle \rangle$	> 9	+12	dBm	1	
		\searrow					
	\square	Ň					
	\sim						
RF & Data	1						
2 nd harmonic	$\langle \rangle$	/	-50		dBc	1	
Harmonics @ > 1GHz	>	<i>,</i>	-46		dBc	1	
Initial frequency accuracy	\sim		±50		KHz		
Overall frequency accuracy			±75		KHz		
Modulation bandwidth @ -3dB			10		KHz		
Modulation distortion (THD)					%		
Power up time to full RF			10		μs		
$\langle \cdot \rangle$							
Data rate 🔍 🔿 🔿				50000	bits/s		
Data pulse width		40			μs		
$\langle \rangle \rangle$							

Note 1: measured into a 50Ω impedance

Absolute Maximum Ratings: Receiver QFMR5

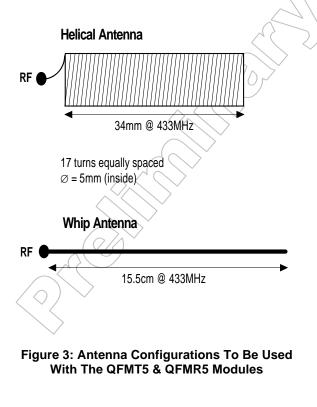
Operating temperature: Storage temperature:

Supply Voltage (pin 5) RF Input (pin 1) -10°C to +55°C -40°C to +100°C

7V +20dBm

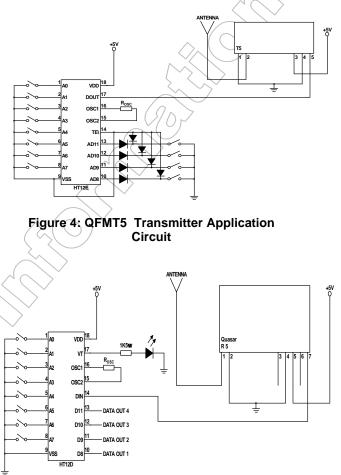
Electrical Characteristics: Receiver R5

Pin 5	min. 4.5	typ. 5.0	Max	units	notes
5	4.5	50	$\langle \rangle$		
5	4.5	50			1
		0.0	5.5	Volts	
		4.8 <		mA	
	-		10	mV_{p-p}	
	4.0	$\wedge (\bigcirc$)	V	
	(0.5	V	
	. (\leq			
\sim				dBm	
		230		KHz	
	\searrow	±22		KHz	
\land	>	20		dBm	
\sum					
27	/	<60		dB	
		<60		dBm	
		<60		dBm	
		tba		mS	
		tba		mS	
				-	
		tba		mS	
				<u> </u>	
		50			
	100		50000	bps	
		4.0	-107 230 ±22 20 <p< td=""><td>0.5 -107 230 ±22 20 <60</td> <60</p<>	0.5 -107 230 ±22 20 <60	4.0 V 0.5 V 0.5 V -107 dBm 230 KHz ±22 KHz 20 dBm <60


Antenna Design

The design and positioning of the antenna is as crucial as the module performance itself in achieving a good wireless system range. The following will assist the designer in maximising system performance.

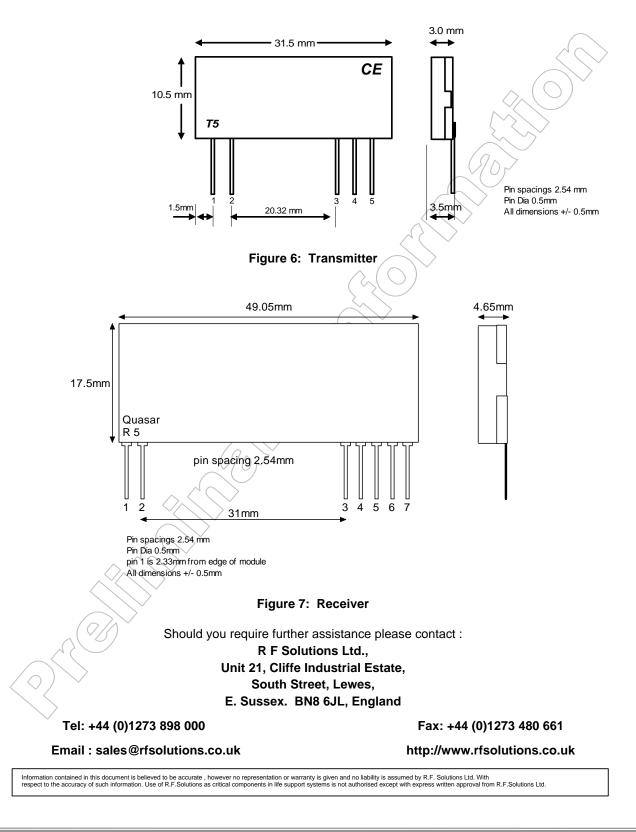
The antenna should be kept as far away from sources of electrical interference as physically possible. If necessary, additional power line decoupling capacitors should be placed close to the module.


The antenna 'hot end' should be kept clear of any objects, especially any metal as this can severely restrict the efficiency of the antenna to receive power. Any earth planes restricting the radiation path to the antenna will also have the same effect.

Best range is achieved with either a straight piece of wire, rod or PCB track @ ¼ wavelength (15.5cm @ 433.92MHz). Further range may be achieved if the ¼ wave antenna is placed perpendicular in the middle of a solid earth plane measuring at least 16cm radius. In this case, the antenna should be connected to the module via some 50 ohm characteristic impedance coax

Application Circuit

The application circuits show how the QFMT5 transmitter and the QFMR5 receiver can easily be integrated into a system to form a wireless link.


Figure 5: QFMR5 Receiver Application Circuit

RSSI Values:

The QFMR5 RSSI output provides a DC output proportional to the RF input signal. The table below shows the typical RSSI value depending on the Rf signal strength.

RF Signal Strength / dBm	RSSI / V
-110	tba
-100	
-90	
-80	
-70	
-60	
-50	
-40	
-30	
-20	

Mechanical Dimensions

