Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly

OPV314AT, OPV314BT, OPV314YAT, OPV314YBT

Features

- 850 nm VCSEL technology
- High thermal stability
- Up to 2.5 Gbps
- Recommended for multimode fiber applications
- Microbead lens
- Pin out and attenuation options available on request
- Burned in for communication level reliability
- High optical coupling to MM fiber
- ST* style receptacle

Description

The OPV314AT and OPV314BT are high performance 850nm VCSEL packaged for high speed communication links. OPV314AT and OPV314BT combines all the performance advantages of a VCSEL with the addition of a power monitor diode for precise control of optical power.

The OPV314YAT and OPV314YBT are identical electrically and optically and differ only in pin out. Refer to mechanical drawings for details.

This product's combination of features including high speed, high output power and concentric beam makes it an ideal transmitter for integration into all types of data communications equipment.

Applications include:

- Fibre Channel
- Gigabit Ethernet
- ♦ ATM
- VSR (Very Short Reach)
- Intra-system links
- Optical backplane interconnects.

Technical Data

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Storage Temperature	-40°C to +125°C
Operating Temperature	-40°C to +85°C
Soldering Lead Temperature	260°C for 10 Seconds
Maximum Forward Peak Current	30 mA
Maximum Reverse Voltage	5 V

Additional laser safety information can be found on the Optek website. See application #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may cause devices to exceed rated classification

* - ST is a registered trademark of AT&T

Optek Technology, Inc.

Carrollton, Texas 75006

(972) 323-2200

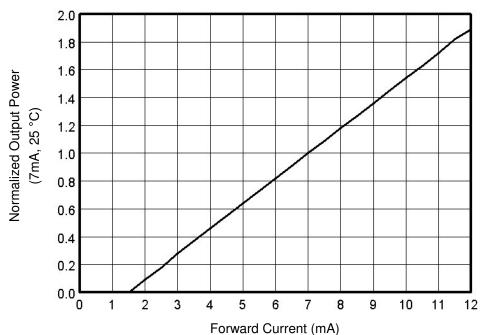
OPV314AT, OPV314BT, OPV314YAT, OPV314YBT Technical Data

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITION
P _{T50}	Total Coupled Power OPV314AT, OPV314YAT	600			μW	I _F = 7 mA
	50/125 μm Fiber OPV314BT, OPV314YBT	400			μW	$I_F = 7 \text{ mA}$
I _{TH}	Threshold Current	0.8		3.0	mA	Note1
V _F	Forward Voltage	1.6		2.2	V	I _F = 7 mA
I _R	Reverse Current			35	nA	$V_R = 5 V$
Rs	Series Resistance	20		55	ohms	Note 2
η	Slope Efficiency OPV314AT, OPV314YAT	60			μW/mA	Note 3
	OPV314BT, OPV314YBT	40			μW/mA	Note 3
I _{RPD}	Reverse Current, photo diode			30	nA	$V_R = 40 V$
I _M	Monitor Current	30			μΑ	$I_{F} = 7 \text{ mA}, V_{R} = 5 \text{ V}$
λ	Wavelength	840		856	nm	
Δλ	Optical Bandwidth			0.85	nm	
tr	Rise Time		90		ps	20% to 80%
t _f	Fall Time		120		ps	80% to 20%
N _{RI}	Relative Intensity Noise		-123		db/Hz	
$\Delta\eta/\Delta T$	Temp Coefficient of Slope Efficiency		-0.4		%/℃	(0°-70°C)
$\Delta I_{TH} / \Delta T$	Temp Coefficient of Threshold Current		±0.1		mA	0°-70°C
Δλ/ΔΤ	Temp Coefficient of Wavelength		0.06		nm/℃	0°-70°C
$\Delta V f / \Delta T$	Temperature Coefficient for VF		-2.5		mV/℃	

Electrical/Optical Characteristics (at 25 °C unless otherwise specified)

NOTES:

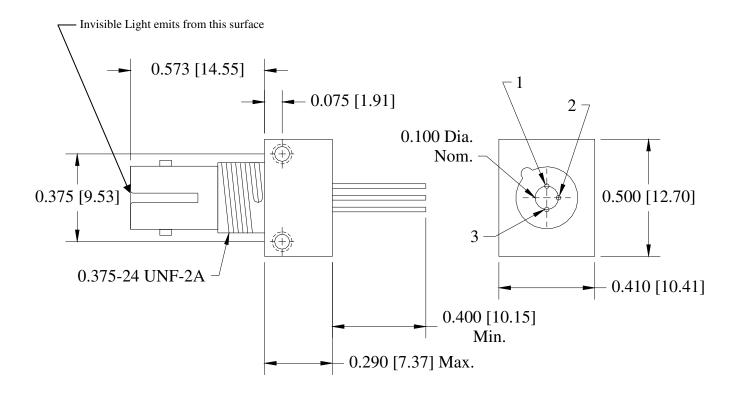
(1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.

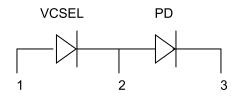

(2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.

(3) Slope efficiency, is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points. Measured with a 50/125 μ m fiber.

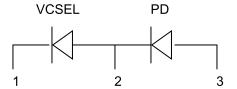
(4) Linearity—Using data points taken for slope efficiency above, data L/delta I shall be calculated for each adjacent pair of points.

OPV314AT, OPV314BT, OPV314YAT, OPV314YBT Technical Data


Normalized Output Power vs. Forward Current


October 2003 Issue 2.4

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.


OPV314AT, OPV314BT, OPV314YAT, OPV314YBT Technical Data

OPV314AT, OPV314BT				
Pin	Connection			
1	VCSEL Anode			
2	VCSEL Cathode/PD Anode			
3	PD Cathode			

OPV314YAT, OPV314YBT		
Pin	Connection	
1	VCSEL Cathode	
2	VCSEL Anode/PD Cathode	
3	PD Anode	

October 2003

Optek reserves the right to n	Issue 2.4			
Optek Technology, Inc.	Carrollton, Texas 75006	(972) 323-2200	sensors@optekinc.com	www.optekinc.com