

SFH Transmitter & Receiver

Plastic Fiber Components

Plastic Fiber Optic Transmitter Diodes and Photo Detector Receivers

Features

- Wavelengths:650 nm, 660 nm, 950 nm
- Operating temperature range: -40°C to +85°C
- 2.2 mm aperture holds standard 1000 micron plastic fiber
- ▶ No fiber stripping required
- Good linearity
- Molded microlens for efficient coupling

Plastic Connector Housing

- Mounting screw attached to the connector
- Interference-free transmission from light-tight housing
- Transmitter and receiver can be flexibly positioned
- No crosstalk
- Auto insertable and wave solderable
- Supplied in tubes

Applications

- ► Household electronics
- Power electronics
- Optical networks
- Medical instruments
- Automotive electronics
- Light barriers

Photo Detector Receivers

Features

- Supply voltage range: 0.5 V to 15 V
- Operating temperature range: -40°C to +85°C
- ► Transfer rate: < 5 Mbit/s
- Bipolar IC with open-collector output
- ▶ Digital output: TTL compatible
- Sensitive in visible and near IR range
- Low switching threshold

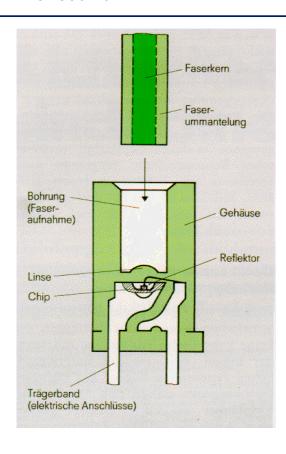
PLASTIC fiberoptic transmitterdiodes and photo-detector receivers

PLASTIC FIBER LINKS use simple and inexpensive LEDs and photodiodes as transmitters and receivers, respectively.

The most common type plastic optical fiber is composed of a polymethylmethacrylate (PMMA) core encased in fluoride-based carbon polymer.

FEATURES

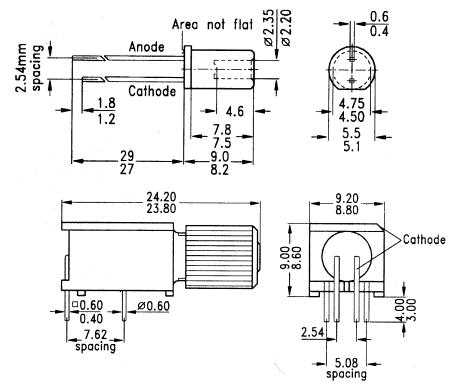
- •Wavelengths: 650 nm, 660 nm, 950 nm
- •Data rate DC up to 50 Mbit/s
- Operating temperature range;
- •-40°C to + 85°C
- •2.2 mm aperture holds standard 1000 micron plastic fiber
- •No fiber stripping required (SFHxxx)


APPLICATION

- Household electronics
- Power electronics
- Optical networks
- Medical instruments
- Automotive electronics

INFINEON TRANSCEIVERS will be used in the proven SFHxxx series

Easy coupling Standard POF 2,2 mm Diameter 1 mm Corediameter



"Lochdiode" Transmitter and Receiver "Lochdiode" and "Verbinder"

Actual Type Overview in Year 2003

SFH250 Photodiode (usable up to 100 MHz)

SFH350 Phototransistor (usable up to 100 kHz)

SFH551/1 Integrated Receiver DC - 5 Mbit/s TTL out

SFH450 Transmitter (LED only) 950 nm 1µs

SFH750 (discontinued) Transmitter (LED only) 650 nm 100ns

SFH756 Transmitter (LED only) 650 nm 100ns

SFH757 Transmitter (LED only) 650 nm 30ns

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata Photodiode SFH250

Parameter	Symbol	Value	Unit
Maximum Photosensitivity Wavelength	λ_{Smax}	850	nm
Photosensitivity Spectral Range (S=10% S _{max})	λ	400 to 1100	nm
Dark Current (V _R =20V)	I _R	1 (≤10)	nA
Capacitance (f = 1 MHz, $V_R = 0V$)	Co	11	pF
Rise and Fall Times of Photo Current			
$(R_L=50\Omega, V_R=30V, \lambda=880nm)$ 10% to 90%	t _R	0,01	μs
90% to 10%	t _F	0,01	μs
Photo Current (Φ_{IN} = 10 μ W coupled from the End of a Plastic fiber, V_R =5V)			
λ =660nm	I _P	3(≥1,6)	μA
λ=950nm	l _P	4(≥2,5)	μA

In connection with a suitable preamplifier this photodiode can ce used for optical receiver with datarate up to 100Mbit/s In this case high reverse voltage (10 V) at the diode is needed in order to decrease the capacity and increase the speed

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata Phototransistor SFH350

Parameter	Symbol	Value	Unit
Maximum Photosensitivity Wavelength	λ_{Smax}	850	nm
Photosensitivity Spectral Range (S=10% S _{max})	λ	400 to 1100	nm
Dark Current (V _R =20V)	I _R	1 (≤10)	nA
Capacitance (f = 1 MHz, without light)			
$(V_{CE} = 0V)$	CCE	10,5	pF
$(V_{CB} = 0V)$	C _{CE}	21,5	pF
$(V_{EB} = 0V)$	CEB	20,5	pF
Rise and Fall Times of Photo Current			
$(R_1 = 1 k\Omega, V_{CF} = 5V, I_{C} = 1,0 \text{mA}, \lambda = 959 \text{nm})$			
10% to 90%	t _R	20	μs
90% to 10%	t _F	20	μs
Current Gain	HFE	500	
Collector Dark Current (V _{CE} = 5V)	I _{CE0}	2(≤50)	nA
Photo Current (V_{CE} =5V, Φ_{IN} = 10 μ W coupled			
from the End of a Plastic fiber, λ=660nm)	I _{CE}	0,8 (≥0,16)	mA
Temperature Coefficient HFE	TC _{HFE}	0,55	%/K

This photodiode can ce used for optical receiver with high sensitivity in low frequency application

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata Digital Receiver SFH551/1

- •Bipolar IC with open-collector output
- •Digital output, TTL compatible
- •Sensitive in visible and near IR range
- •Low switching threshold
- •Transfer rate ≤5 Mbit/s

Parameter	Symbol	Values	Unit
Maximum Photosensitivity Wavelength	λSmax	700	nm
Photosensitivity Spectral Range	λ	600 to 780	nm
(S=80% S _{max})			
SFH 551/1 Optical threshold power (λ	Φ INth	≤ 6	μW
=660nm)		≤ - 22	dBm
Maximum optical power (λ=660nm)	Φ_{INL}	1000	μW
maximum value of tpLH at maximum power!		0	dBm
Optical power for output high without errors	Φ INH	≤0,1	μW
(λ=660nm)		≤ -40	dBm
Propagation delay (optical input to electrical	t _{PHL}	< 100	ns
output, with fast optical pulse)	tpi H	< 250	ns
Depends on received optical power level	. 211		
Current Consumption (without output current)	Icc	4	mA

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata POF LED SFH450

Parameter	Symbol	Value	Unit
Peak Wavelength	λ_{Peak}	950	nm
Spectral Bandwidth	Δλ	55	nm
Switching Times (R_G =50 Ω , $I_{F(LOW)}$ =0,1mA, $I_{F(HIGH)}$ =50mA) 10% to 90%	t _R	1	μs
90% to 10% Capacitance (f = 1 MHz, $V_R = 0V$)	C _O	40	μs pF
Capacitance (i = 1 ivil iz, v _R = 0v)	0	40	рі
Forward Voltage (I _F = 10 mA)	V _F	1,3 (≤1,5)	V
Output Power coupled into Plastic fiber (I _F = 10 mA) see Note 1	Φ_{IN}	90 (≥40)	μW

Wavelength is not optimized for POF!

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata POF LED SFH756

Parameter	Symbol	Value	Unit
Peak Wavelength	λ_{Peak}	660	nm
Spectral Bandwidth	Δλ	25	nm
Switching Times (R_G =50 Ω , $I_{F(LOW)}$ =0,1mA, $I_{F(HIGH)}$ =50mA)			
10% to 90%	t _R	0,1	μs
90% to 10%	t _F	0,1	μs
Capacitance (f = 1 MHz, V _R = 0V)	Co	30	pF
Forward Voltage (I _F = 50 mA)	V _F	2,1 (≤2,8)	V
Output Power coupled into Plastic fiber (I _F = 10 mA) see Note 1	Φ_{IN}	200 (≥100)	μW

Wavelength is optimized for POF Proposed transmitter for systems working with SFH551/1

THE PARTNER FOR OPTICAL DATA TRANSMISSION POF Transceiver Keydata POF LED SFH757

Pa ra m e te r	Symbol	Va lue s	Unit
Peak wavelength	λPeak	650	nm
Spectral bandwidth	Δλ	25	nm
Switching times $(R = 50 \Omega, I)$			
F = 50 mA			
10 % 90 %	<i>t</i> R	15 (<17)	ns
90 % 10 %	t F	18 (<20)	ns
Capacitance ($f = 1 \text{ MHz}$, $V_R =$	Co	30	pF
0 V)			
Forward voltage ($I_F = 50 \text{ mA}$)	V F	2.1 (≤ 2.8)	V
Output power coupled into			
plastic fiber			
(I = 10 mA)	Φ IN	150 (≥100)	μW

High speed transmitter for about 50 Mbit/s up to 100 Mbit/s (with peaking)

Application Fields of SFHxxx Components

Some System Configuration:

Low speed short length with PMMA fiber SFH350 with SFH450

limited by receiver

SFH350 with SFH756 Low speed long length with PMMA fiber

limited by receiver

SFH250 with SFH450 Medium speed short length with PMMA fiber

limited by transmitter

SFH250 with SFH756 Medium speed long length with PMMA fiber SFH250 with SFH757

High speed long length with PMMA fiber

Depends on receiver design

SFH551/1 with SFH450 Low speed short length with PMMA fiber

limited by transmitter

SFH551/1 with SFH756 Max. 5Mbit/s speed, long length with PMMA fiber

limited by receiver

SFH551/1 with SFH757 Low speed short length with PMMA fiber

limited by receiver