Fibre Optic Transmitter for Polymer Fibre Optics

FFT 2000 BHR Visible 660nm Emitter

- Fast Response Time
- 660nm Output Optimized for Polymer Fibre
- Ultra High Output (1mW into 1mm Fibre)

Description

This device provides users with a universal LED emitter designed primarily for maximising the applications of polymer optical fibre. It will also launch good levels of power into other multimode fibre types, and the fast response time makes it suitable for data rates up to 10MB/s.

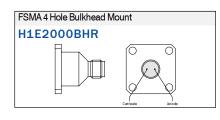
Maximum Recommended Ratings (@TA-25°C Unless Otherwise noted)

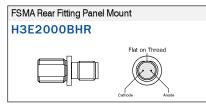
Reverse Voltage	4.0V
Continuous Forward Current	50mA*
Storage Temperature Range	-55°C to +100°C
Operating Temperature Range	-40°C to +85°C
Lead Solder Temperature	240°C (1.6mm from case for 5secs)
Power Dissipation	70mW

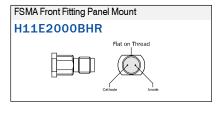
Optoelectronic Characteristics

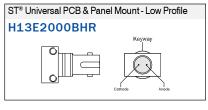
Parameter	Min	Тур	Max	Units	Test Conditions
Radiant Power Output	500	900		μW	I _F =50mA
Forward Voltage		2.0	2.5	V	I _F =30mA
Peak Emission Wavelength		660		nm	I _F =30mA
Spectral Line Halfwidth		30		nm	I _F =30mA
Output Rise Time		100		ns	I _{EE} =50mA
Output Fall Time		100		ns	I _{EP} =50mA
Cut Off Frequency		25		MHz	I_F =40mA plus 10mA Peak to Peak

SMA PCB Mounting


H22E2000BHR


A red sleeve on the anode denotes that the device is a transmitter.




Outline drawings and recommended panel cutout/PCB layout can be found on pages A3-A5

* Note: Reducing continuous forward current considerably enhances device lifetime.

