Specification for BTHQ 128064AVD-FSTF-12-LEDMULTI-COG

Version October 2004


```
BTHQ 128064AVD-FSTF-12-LEDMULTI-COG
```

OCT/2004

PAGE 2 OF 16

DOCUMENT REVISION HISTORY 1:

DOCUMENT DATE	DESCRIPTION	CHANGED	CHECKED
REVISION		BY	BY
REVISION FROM TO A 2004.10.13	First Release. Based on: a.) VL-QUA-012B REV. W, 2004.03.20 (According to VL-QUA-012B, LCD size is small because Unit Per Laminate=24 which is more than 6pcs/Laminate.)	CHEN HUI JUAN	TIAN JIAN WEI

BTHQ 128064AVD-FSTF-12-LEDMULTI-COG OCT/2004 PAGE 3 OF 16

CONTENTS

Page No.

1.	GENERAL DESCRIPTION	4
2.	MECHANICAL SPECIFICATIONS	4
3.	INTERFACE SIGNALS	8
4. 4.1 4.2	ABSOLUTE MAXIMUM RATINGS ELECTRICAL MAXIMUM RATINGS – FOR IC ONLY ENVIRONMENTAL CONDITION	10 10 10
5. 5.1 5.2	ELECTRICAL SPECIFICATIONS TYPICAL ELECTRICAL CHARACTERISTICS TIMING SPECIFICATIONS	11 11 12
6.	COMMAND TABLE	15
7.	LCD COSMETIC CONDITIONS	16
8.	REMARK	16

BTHQ 128064AVD-FSTF-12-LEDMULTI-COG OCT/2004 PAGE 4 OF 16

Specification of LCD Module Type Model No.: COG-BTD12864-14

1. General Description

- 128 x 64 Dots FSTN Positive Black & White Transflective Dot Matrix LCD Module.
- Viewing Angle: 12 o'clock direction.
- Driving duty: 1/65 Duty, 1/7 bias.
- 'Epson' S1D10605D04B (COG) Dot Matrix LCD Driver or equivalent.
- FPC connection.
- Red & Green & Blue Tricolor LED02 backlight.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Parameter	Specifications	Unit
Outline dimensions	55.6(W) x 70.2(H) x 4.48(D) (Included FPC. Exclude terminals of	mm
	backlight)	
Viewing area	50.60(W) x 31.0(H)	mm
Active area	46.577(W) x 27.697(H)	mm
Display format	128(W) x 64(H)	dots
Dot size	0.349(W) x 0.418(H)	mm
Dot spacing	0.015(W) x 0.015(H)	mm
Dot pitch	0.364(W) x 0.433(H)	mm
Weight	TBD	grams

Table 1

OCT/2004

PAGE 5 OF 16

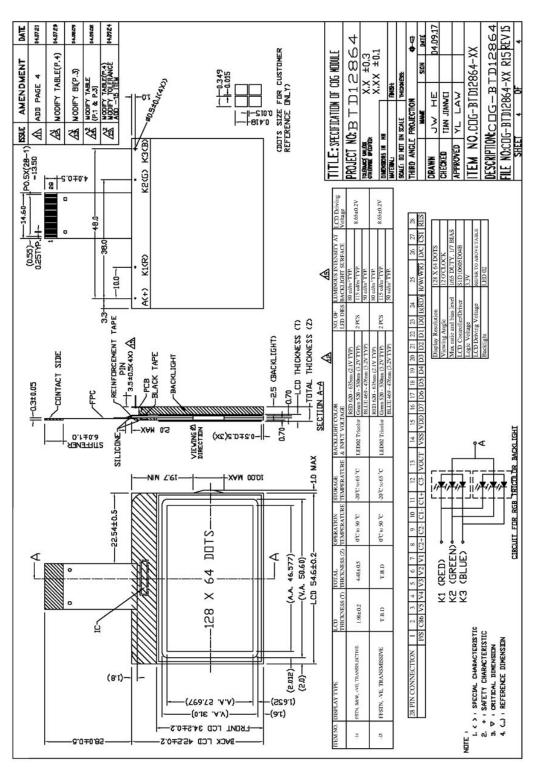


Figure 1: Module Specification.

OCT/2004

PAGE 6 OF 16

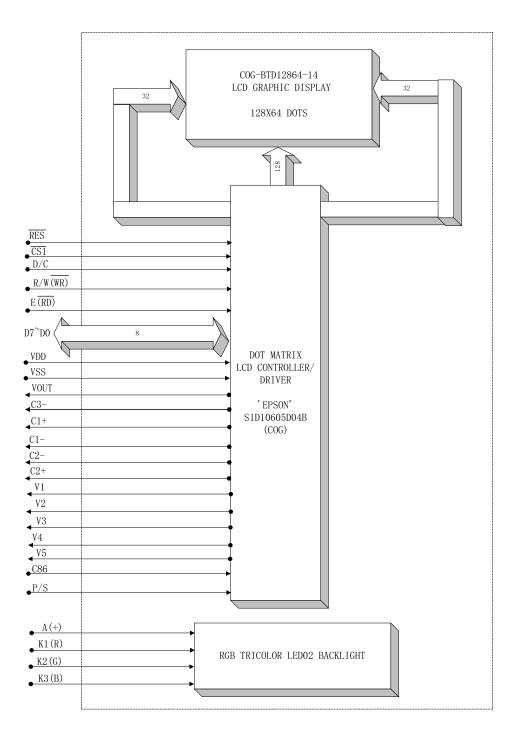


Figure 2: Block Diagram.

OCT/2004

PAGE 7 OF 16

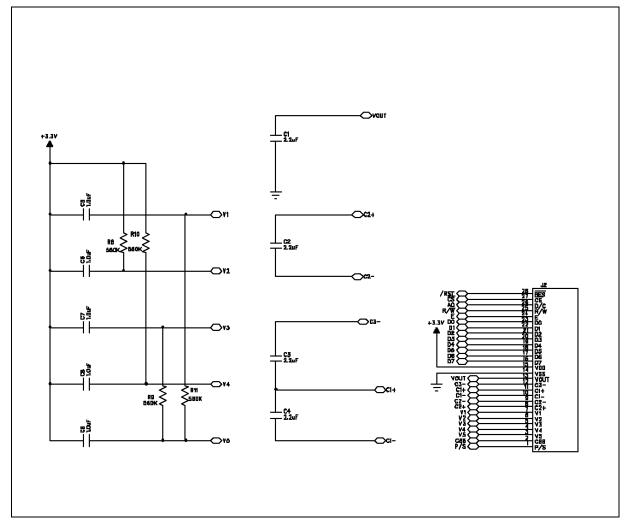


Figure 3: Reference Circuit

OCT/2004

PAGE 8 OF 16

3. Interface signals

Table 2(a): Pin Assignment

Pin No.	Symbol	Description									
1	P/S	This is the paral	lel data input/			nal.					
		This is the parallel data input/serial data input switch terminal. P/S = HIGH: Parallel data input.									
		P/S = LOW: Serial data input.									
			The following applies depending on the P/S status:								
			P/S Data/Command Data Read/Write Serial Clock								
			D/C(A0)	D0 to D7	RD, WR						
		LOW I	D/C(A0)	SI (D7)	Write only	SCL (D6)					
		When $P/S = I O$	W D0 to D5	are HZ_D0 to I)5 may be HIC	GH, LOW or Open.					
		$\overline{RD}(E)$ and $\overline{WR}(E)$				JII, LOW OF OPEN.					
		With serial data				ported.					
2	C86	This is the MPU			<u> </u>						
		C86=HIGH: 68	00 Series MPU	J interface.							
		C86=LOW: 808									
3	V5		This is multi-level power supply for liquid crystal drive.								
4	V4		Voltage levels are determined based on VDD, and must maintain the relative								
5	V3		magnitudes shown below.								
6	V2	$VDD (=V0) \ge V$	$VDD (=V0) \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$								
7	V1	Master operatio	n When the no	war supply tur	ns ON the inte	ernal power supply					
		circuits produce	-			1 11 5					
		selected using th				ige setting are					
		8									
		For 1/7 bias: V1	=(1/7)xV5, V	$2 = (2/7) \times V5, V$	3=(5/7)xV5, V	74=(6/7)xV5.					
8	C2+	•	converter. Co	nnects a capaci	tor between th	is terminal and C2-					
		terminal.									
9	C2-	-	converter. Co	nnects a capaci	tor between th	is terminal and C2+					
10	<u>C1</u>	terminal.			4 1 4	is terminal and OI b					
10	C1-	DC/DC voltage terminal.	converter. Co	nnects a capaci	tor between th	is terminal and C1+					
11	C1+		converter Co	nnects a canaci	tor between th	is terminal and C1–					
		terminal.		inicets a capaci							
12	С3-		converter Co	nnects a canaci	tor between th	is terminal and C1+					
		terminal.		a cupue							
13	VOUT		converter. Co	nnects a capaci	tor between th	is terminal and VSS.					
14	VSS					also the reference					
		power supply fo	A	<u> </u>	for the liquid c	rystal drive.					
15	VDD	Power supply for	or logic $(+3.3)$	/).							

BTHQ 128064AVD-FSTF-12-LEDMULTI-COG OCT/2004 PAGE 9 OF 16

Table 2(b): Pin Assignment

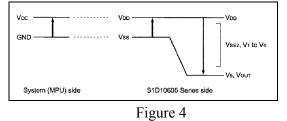
17 18	D7 D6 D5	This is an 8-bit bi-directional data bus that connects to an 8-bit standard MPU data bus.
18		data bus.
	D5	
19	20	When the serial interface is selected ($P/S = LOW$), then D7 serves as the serial
	D4	data input terminal (SI) and D6 serves as the serial clock input terminal (SCL).
20	D3	At this time, D0 to D5 are set to high impedance.
21	D2	When the chip select is inactive, D0 to D7 are set to high impedance.
22	D1	
	D0	
24 E	$\overline{(RD)}$	When connected to an 8080 MPU, this is active LOW.
		This pin is connected to the RD signal of the 8080 MPU, and the S1D15605
		series data bus is in an output status when this signal is LOW.
		When connected to a 6800 Series MPU, this is active HIGH.
		This is the 6800 Series MPU enable clock input terminal.
25 R/W	$W(\overline{WR})$	When connected to an 8080 MPU, this is active LOW.
		This terminal connects to the 8080 MPU WR signal. The signals on the data
		bus are latched at the rising edge of the WR signal.
		When connected to an 6800 Series MPU:
		This is the read/write control signal input terminal. When $P(W = UICH)$ B and
		When $R/W = HIGH$: Read.
26 I	D/C	When R/W = LOW: Write. This is connect to the least significant bit of the normal MPU address bus, and
20 1	D/C	it determines whether the data bits are data or a command.
		D/C(A0)="High": Indicates that D0 to D7 are display data.
		D/C(A0)="Low": Indicates that D0 to D7 are control data.
27 0	CS1	This is the chip select signal for first chip.
	0.01	When CS1=LOW and CS2=HIGH, then the chip select becomes active and the
		data/commands I/O is enabled.
28 H	RES	When RES is set to LOW, the settings are initialized.
	~~~~	The reset operation is performed by the RES signal level.

OCT/2004

PAGE 10 OF 16

#### 4. Absolute Maximum Ratings

#### 4.1 Electrical Maximum Ratings – for IC Only


Table 3

Parameter	Symbol	Min.	Max.	Unit
Power Supply voltage (Logic)	VDD-VSS	-0.3	+6.0	V
Power Supply voltage(VSS2)(VDD standard)	VSS2	-4.0	+0.3	V
Power Supply voltage(V5,VOUT)(VDD standard)	V5,VOUT	-18.0	+0.3	V
Power Supply voltage(V1,V2,V3,V4)(VDD standard)	V1,V2,V3,V4	V5	+0.3	V
Input voltage	Vin	-0.3	VDD+0.3	V

Note: 1.) The VSS2, V1 to V5 and VOUT are relative to the VDD=0V reference.

2.) The V1, V2, V3, and V4 voltages must always satisfy the condition of  $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$ .

3.)The modules may be destroyed if they are used beyond the absolute maximum ratings.



#### 4.2 Environmental Condition

Table 4

Item	Operating Temperature (Topr)		Storage Temperature (Tstg)		Remark
	Min.	Max.	Min.	Max.	-
Ambient Temperature	0°C	+50°C	-20°C	+65°C	Dry
Humidity		. RH for T H for Ta >		no condensation	
Vibration (IEC 68-2-6) cells must be mounted on a suitable connector	Amplitud	y: $10 \sim$ le: 0.75 r 20 cycles	nm	3 directions	
Shock (IEC 68-2-27) Half-sine pulse shape	Pulse dur Peak acco Number o	ation : 11 eleration: 9 of shocks : perpendic	$\frac{ms}{281 m/s^2} = \frac{3 shocks}{2}$	3 directions	

OCT/2004

PAGE 11 OF 16

#### 5. Electrical Specifications

#### 5.1 Typical Electrical Characteristics

#### At Ta = +25 °C, VDD = +3.3±5%, VSS = 0V.

	,	Table 5				
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage (Logic)	VDD-VSS		3.14	3.3	3.47	V
Supply voltage (LCD) (built-in)	VLCD =VDD-V5	Ta = 0 °C, Character mode VDD = +3.3V, Note 1	-	8.90	-	V
		Ta = 25 °C, Character mode VDD = +3.3V, Note 1	8.45	8.65	8.85	V
		Ta = $+50 \text{ °C}$ , Character mode VDD = $+3.3$ V, Note 1	-	8.10	-	V
Low-level input signal voltage	V _{ILC}	Note 2	VSS	-	0.2xVDD	V
High-level input signal voltage	V _{IHC}	Note 2	0.8xVDD	-	VDD	V
Supply Current (Logic & LCD)	IDD	VDD = +3.3V,Note 1, Character mode	-	0.46	0.69	mA
		VDD = +3.3V,Note 1, Checker board mode	-	0.78	1.2	mA
Supply voltage of LED02	RED VLED		1.8	2.1	2.3	V
backlight	GREEN VLED		2.9	3.2	3.5	
	BLUE VLED	Forward current	2.9	3.2	3.5	
Wavelength of	$\lambda$ (RED)	=40mA	620	628	635	nm
LED02	$\lambda$ (GREEN)	Number of LED dice	520	525	530	
backlight	λ (BLUE)	=2dies.	469	472	476	
Luminance (on	(RED)		55	80	104	cd/m2
the backlight surface) of	(GREEN)		80	115	150	
backlight	(BLUE)		35	50	65	

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Note 2: A0, D0 to D5,D6(SCL),D7(SI),E(RD),R/W(WR),CS1,C86,P/S,RES terminals.

BTHQ 128064AVD-FSTF-12-LEDMULTI-COG OCT/2004 PAGE 12 OF 16

#### 5.2 Timing Specifications

#### System Bus read/Write Characteristics 1 (For the 8080 Series MPU) At Ta = 0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

<u>Table 6</u>

item	Sianol	Granhal	<b>^</b>	Rat	Units				
itern	Signal	Symbol	Condition	Min.	ting Max. — — — — — — — — — — — — —	Units			
Address hold time	A0	tans		0		ns			
Address setup time		taws		0	—	ns			
System cycle time 1	A0	tcycl8		300		ns			
System cycle time 2		tсусна		300	—	ns			
Control LOW pulse width (Write)	WR	tccLw		60	<u>—</u> .	ns			
Control LOW pulse width (Read)	RD	<b>t</b> CCLR		120	—	ns			
Control HIGH pulse width (Write)	WR	tcchw		60	—	ns			
Control HIGH pulse width (Read)	RD	<b>t</b> CCHR		60	—	ns			
Data setup time	D0 to D7	tosa		40		ns			
Data hold time		tona		15		ns			
RD access time		tACC8	CL = 100 pF		140	ns			
Output disable time		toн8	r	10	100	ns			

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,

 $(tr + tf) \le (tCYCL(H)8 - tCCLW - tCCHW)$  for  $(tr + tf) \le (tCYCL(H)8 - tCCLR - tCCHR)$  are specified.

*2 All timing is specified using 20% and 80% of VDD as reference.

*3 tCCLW and tCCLR are specified as the overlap between CS1 being LOW (CS2=HIGH) and WR and RD being at the LOW level.

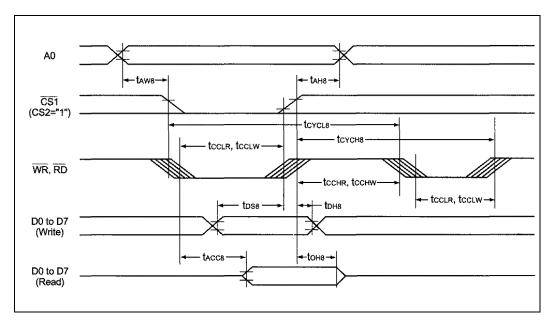



Figure 5: The timing diagram of system bus read/write (For the 8080 Series MPU)

OCT/2004

PAGE 13 OF 16

#### System Bus read/Write Characteristics 2 (For the 6800 Series MPU)

#### At Ta =-0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

ltem		Ciamal Car	Sumbal	O	Rat	Units	
Item		Signal	Symbol	Condition	Min.	Max.	Units
Address hold time Address setup time		A0	tah6 taw6		0 0		ns ns
System cycle time 1 System cycle time 2	ł	A0	tcych6 tcycL6		300 300		ns ns
Data setup time Data hold time		D0 to D7	tose toнe		40 15		ns ns
Access time Output disable time			tacce tohe	C∟ = 100 pF	10	140 100	ns ns
Enable HIGH pulse time	Read Write	Е	tewhr tewhw		120 60		ns ns
Enable LOW pulse time	Read Write	E	tewlr tewlw		60 60		ns ns

#### Table 7

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf)  $\leq$  (tCYCH(L)6 - tEWLW - tEWHW) for (tr + tf)  $\leq$  (tCYCH(L)6 - tEWLR - tEWHR) are specified.

*2 All timing is specified using 20% and 80% for VDD as the reference.

*3 tEWLW and tEWLR are specified as the overlap between  $\overline{\text{CS1}}$  being LOW (CS2=HIGH) and E.

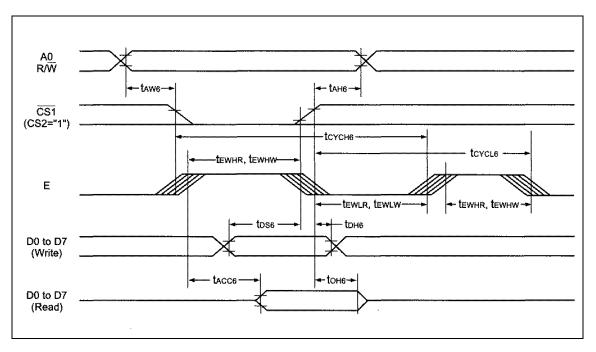



Figure 6: The timing diagram of system bus read/write (For the 6800 Series MPU)

OCT/2004

PAGE 14 OF 16

#### The serial interface

#### At Ta =0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

#### Table 8

ltem	Signal	Ourse had	0	Rat		
Item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period	SCL	tscyc		250	_	ns
SCL HIGH pulse width		tsнw		100		ns
SCL LOW pulse width		ts∟w		100		ns
Address setup time	A0	tsas		150	_	ns
Address hold time		<b>t</b> SAH		150		ns
Data setup time	SI	tsps		100		ns
Data hold time		tspн		100		ns
CS-SCL time	CS	tcss		150		ns
		tcsH		150		ns

Note 1: The input signal rise and fall (tr, tf) are specified at 15ns or less.

Note 2: All timing is specified using 20% and 80% of VDD as the standard.

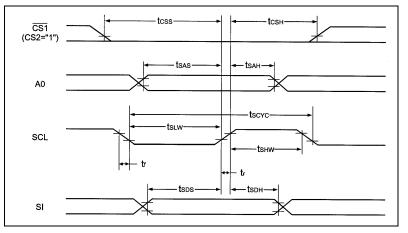



Figure 7: The timing diagram of serial interface

#### **Reset Timing**

At Ta =0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

Table 9

ltem	Signal	Symbol	Condition		Units		
nem	Signal	Symbol	Condition	Min.	Typ.	Max.	Units
Reset time		tR				1	μs
Reset LOW pulse width	RES	trw		1	—	_	μs

Note : All timing is specified with 20% and 80% of VDD as the standard.

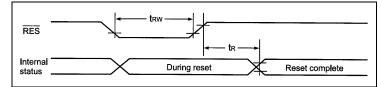



Figure 8: Reset Timing

OCT/2004

PAGE 15 OF 16

#### 6. Command Table

#### Table 10

	Command	Command Code											
		A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2)	Display start line set	0	1	0	0	1		Display start address					Sets the display RAM display start line address
(3)	Page address set	0	1	0	1	0	1	1	Page address			s	Sets the display RAM page address
(4)	Column address set upper bit	0	1	0	0 0 0 1				Most significant column address				Sets the most significant 4 bits of the display RAM column address.
	Column address set lower bit	0	1	0	0	0 0 0 Least significant column address							Sets the least significant 4 bits of the display RAM column address
(5)	Status read	0	0	1		Sta	atus		0	0	0	0	Reads the status data
(6)	Display data write	1	1	0				Write data					Writes to the display RAM
(7)	Display data read	1	0	1				Read data					Reads from the display RAM
(8)	ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9)	Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10)	Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11)	LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio S1D10605***** 0: 1/9, 1: 1/ S1D10606***** /S1D10609***** 0: 1/8, 1: 1// S1D10609***** 0: 1/6, 1: 1//
(12)	Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13)	End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14)	Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15)	Common output mode select	0	1	0	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction, 1: reverse direction
(16)	Power control set	0	1	0	0	0	1	0	1	Operating mode		ng	Select internal power supply operating mode
(17)	V5 voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0	Resistor ratio		atio	Select internal resistor ratio (Rb/Ra) mode
(18)	Electronic volume mode set	0	1	0	1	0	0	0	0	0	0	1	
	Electronic volume register set	0	1	0	*	*		Electro	onic vo	c volume value			Set the V5 output voltage electronic volume register
(19)	Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0 1	0: OFF, 1: ON
	Static indicator register set	0	1	0	*	*	*	*	*	*	Мо	de	Set the flashing mode
(20)	Power saver												Display OFF and display all points ON compound command
(21)	NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(22)	Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

(Note) *: disabled data

BTHQ 128064AVD-FSTF-12-LEDMULTI-COG OCT/2004 PAGE 16 OF 16

#### 7. LCD Cosmetic Conditions

- a.) Reference document follow VL-QUA-012B.
- b.) LCD size of the product is small.

#### 8. Remark

- a.) Identification labels will be stuck on the module without obstructing the viewing area of display.
- b.) Data Modul does not responsible for any polarizer defect after the protective film has been removed from the display.