

Data Sheet

Table of Contents

Definitions and Conditions 3
Frequency and Time Specifications 4
Amplitude Accuracy and Range Specifications 6
Dynamic Range Specifications 8
PowerSuite Measurement Specifications 11
General Specifications 12
Inputs and Outputs 13
I/Q Analyzer 15
Related Literature 18
Maximize throughput
Whether you're focused on time-
to-market, time-to-volume, or cost
of test, your choice of economy-
class signal analyzer should help
you save both time and money.
That's the idea that drives the
Agilent EXA signal analyzer-and
it's the fastest way to maximize
throughput on the production line.
From measurement speed to code
compatibility, it makes every mil-
lisecond count and helps reduce
your overall cost of test.

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature of 0 to $55^{\circ} \mathrm{C}{ }^{1}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2 б) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies $<10 \mathrm{MHz}$, with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or, if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message; if the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user

1. For earlier instruments (Serial number prefix < MY/SG/US5052), the full temperature ranges from 5 to $50^{\circ} \mathrm{C}$.

This EXA signal analyzer data sheet is a summary of the complete specifications and conditions for N9010A EXA signal analyzers (including N9010AEP Express EXA signal analyzers), which are available in the EXA Signal Analyzer Specification Guide. The EXA Signal Analyzer Specification Guide can be obtained on the web at: www.agilent.com/find/exa_manuals

For ordering information, refer to the EXA Signal Analyzer Configuration Guide (5989-6531EN).

Frequency and Time Specifications

Frequency range	DC coupled	AC coupled
Option 503	9 kHz to 3.6 GHz	10 MHz to 3.6 GHz
Option 507	9 kHz to 7.0 GHz	10 MHz to 7.0 GHz
Option 513	9 kHz to 13.6 GHz	10 MHz to 13.6 GHz
Option 526	9 kHz to 26.5 GHz	10 MHz to 26.5 GHz
Band LO multiple (N)		
$0 \quad 1$	9 kHz to 3.6 GHz	
1	3.5 to 7.0 GHz	
$1 \quad 1$	3.5 to 8.4 GHz	
2	8.4 to 13.6 GHz	
3 2	13.5 to 17.1 GHz	
4 4	17 to 26.5 GHz	
Frequency reference		
Accuracy	\pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]	
Aging rate	$\begin{aligned} & \text { Option PFR } \\ & \pm 1 \times 10^{-7} / \text { year } \\ & \pm 1.5 \times 10^{-7} / 2 \text { years } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Standard } \\ & \pm 1 \times 10^{-6} / \text { year } \end{aligned}$
Temperature stability 20 to $30^{\circ} \mathrm{C}$ Full temperature range	$\begin{aligned} & \text { Option PFR } \\ & \pm 1.5 \times 10^{-8} \\ & \pm 5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & \text { Standard } \\ & \pm 2 \times 10^{-6} \\ & \pm 2 \times 10^{-6} \end{aligned}$
Achievable initial calibration accuracy	$\begin{aligned} & \text { Option PFR } \\ & \pm 4 \times 10^{-8} \end{aligned}$	Standard $\pm 1.4 \times 10^{-6}$
Example frequency reference accuracy (with Option PFR) 1 year after last adjustment	$\begin{aligned} & = \pm\left(1 \times 1 \times 10^{-7}+5 \times 10^{-8}+4 \times 10^{-8}\right) \\ & = \pm 1.9 \times 10^{-7} \end{aligned}$	
Residual FM Option PFR Standard	$\begin{aligned} & \leq(0.25 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p} \text { in } 20 \mathrm{~ms} \text { nominal } \\ & \leq(10 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p} \text { in } 20 \mathrm{~ms} \text { nominal } \\ & \text { See band table above for } \mathrm{N} \text { (LO Multiple) } \end{aligned}$	
Frequency readout accuracy (start, stop, center, marker)		
\pm (marker frequency x frequency reference accuracy $+0.25 \% \times$ span $+5 \% \times \mathrm{RBW}+2 \mathrm{~Hz}+0.5 \times$ horizontal resolution ${ }^{1}$)		
Marker frequency counter		
Accuracy	\pm (marker frequency x frequency reference accuracy +0.100 Hz)	
Delta counter accuracy	\pm (delta frequency x frequency reference accuracy +0.141 Hz)	
Counter resolution	0.001 Hz	
Frequency span (FFT and swept mode)		
Range	0 Hz (zero span), 10 Hz to maximum frequency of instrumen	
Resolution	2 Hz	
Accuracy Swept FFT	\pm (0.25% x span + horizontal resolution $)$ \pm (0.10% x span + horizontal resolution)	

1. Horizontal resolution is span/(sweep points -1).

Sweep time and triggering		
Range	$\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \\ & \text { Span } \geq 10 \mathrm{~Hz} \end{aligned}$	$1 \mu \mathrm{~s}$ to 6000 s 1 ms to 4000 s
Accuracy	$\begin{aligned} & \text { Span } \geq 10 \mathrm{~Hz}, \text { swept } \\ & \text { Span } \geq 10 \mathrm{~Hz}, \text { FFT } \\ & \text { Span }=0 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \pm 0.01 \% \text { nominal } \\ & \pm 40 \% \text { nominal } \\ & \pm 0.01 \% \text { nominal } \end{aligned}$
Trigger	Free run, line, video, external 1, external 2, RF burst, periodic timer	
Trigger Delay	$\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \text { or FFT } \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Resolution } \end{aligned}$	-150 to +500 ms $1 \mu \mathrm{~s}$ to 500 ms $0.1 \mu \mathrm{~s}$
Time gating		
Gate methods Gate length range (except method $=$ FFT) Gate delay range Gate delay jitter	Gated LO; gated video; gated FFT 100.0 ns to 5.0 s 0 to 100.0 s 33.3 ns p-p nominal	
Sweep (trace) point range		
All spans	1 to 40001	
Resolution bandwidth (RBW)		
Range (-3.01 dB bandwidth)	1 Hz to 3 MHz (10 \% steps), 4, 5, 6, 8 MHz	
Bandwidth accuracy (power)	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } 750 \mathrm{kHz} \\ & 820 \mathrm{kHz} \text { to } 1.2 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF}) \\ & 1.3 \text { to } 2 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF}) \\ & 2.2 \text { to } 3 \mathrm{MHz}(<3.6 \mathrm{GHz} \text { CF) } \\ & 4 \text { to } 8 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF}) \end{aligned}$	$\begin{aligned} & \pm 1.0 \%(\pm 0.044 \mathrm{~dB}) \\ & \pm 2.0 \%(\pm 0.088 \mathrm{~dB}) \\ & \pm 0.07 \mathrm{~dB} \text { nominal } \\ & \pm 0.15 \mathrm{~dB} \text { nominal } \\ & \pm 0.25 \mathrm{~dB} \text { nominal } \end{aligned}$
Bandwidth accuracy (-3.01 dB) RBW range	1 Hz to 1.3 MHz	$\pm 2 \%$ nominal
Selectivity ($-60 \mathrm{~dB} /-3 \mathrm{~dB}$)	4.1:1 nominal	
EMI bandwidth (CISPR compliant)	$200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A required)
EMI bandwidth (MIL STD 461E compliant)	$10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$, $100 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A required)
Analysis bandwidth ${ }^{1}$		
Maximum bandwidth	Option B40 Option B25 Standard	40 MHz 25 MHz 10 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz (10 \% steps), 4, 5, 6, 8 MHz , and wide open (labeled 50 MHz)	
Accuracy	$\pm 6 \%$ nominal	
Measurement speed ${ }^{2}$	Standard nominal	Option PC2 nominal
Local measurement and display update rate	11 ms (90/s)	4 ms (250/s)
Remote measurement and LAN transfer rate	6 ms (167/s)	$5 \mathrm{~ms}(200 / \mathrm{s})$
Marker peak search	5 ms	1.5 ms
Center frequency tune and transfer (RF)	22 ms	20 ms
Center frequency tune and transfer ($\mu \mathrm{W}$)	49 ms	47 ms
Measurement/mode switching	75 ms	39 ms

[^0]
Amplitude Accuracy and Range Specifications

1. DC coupling required to meet specifications below 50 MHz . With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with $A C$ coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Input attenuation switching uncertainty		Specifications	Additional information
Attenuation $>2 \mathrm{~dB}$, preamp off Relative to 10 dB (reference setting)	50 MHz (reference frequency) 9 kHz to 3.6 GHz 3.5 to 7.0 GHz 6.9 to 13.6 GHz 13.5 to 26.5 GHz	$\pm 0.20 \mathrm{~dB}$	$\begin{aligned} & \pm 0.08 \mathrm{~dB} \text { typical } \\ & \pm 0.3 \mathrm{~dB} \text { nominal } \\ & \pm 0.5 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \\ & \pm 0.7 \mathrm{~dB} \text { nominal } \end{aligned}$
Total absolute amplitude accuracy			
(10 dB attenuation, 20 to $30^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Swp Time = Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)			
	At 50 MHz At all frequencies 9 kHz to 3.6 GHz	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm(0.40 \mathrm{~dB}+\text { frequ } \\ & \pm 0.27 \mathrm{~dB} \text { (95th Pe } \end{aligned}$	esponse) $\mathrm{e} \approx 2 \sigma)$
Preamp on	100 kHz to 3.6 GHz	\pm ($0.39 \mathrm{~dB}+$ frequ	esponse)
Input voltage standing wave ratio (VSWR) ($\geq 10 \mathrm{~dB}$ input attenuation)			
	10 MHz to 3.6 GHz 3.6 to 7.0 GHz 7.0 to 13.6 GHz 13.6 to 26.5 GHz	< 1.2:1 nominal < 1.5:1 nominal < 1.6:1 nominal < 1.9:1 nominal	
Preamp on (0 dB attenuation)	10 MHz to 3.6 GHz 3.6 to 7 GHz	< 1.7:1 nominal < 1.8:1 nominal	
Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)			
1 Hz to 3 MHz RBW	$\pm 0.10 \mathrm{~dB}$		
4, 5, 6, 8 MHz RBW	$\pm 1.0 \mathrm{~dB}$		
Reference level			
Range Log scale Linear scale	$\begin{aligned} & -170 \text { to }+23 \mathrm{dBm} \text { in } 0.01 \mathrm{~dB} \text { st } \\ & \text { Same as Log (} 707 \mathrm{pV} \text { to } 3.16 \mathrm{~V} \end{aligned}$		
Accuracy	0 dB		
Display scale switching uncertainty			
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between -10 dBm and -80 dBm input mixer level	$\pm 0.15 \mathrm{~dB}$ total		
Trace detectors			
Normal, peak, sample, negative peak, log power average, RMS average, and voltage average			
Preamplifier			
Frequency range	Option P03 Option P07	100 kHz to 3.6 GH 100 kHz to 7.0 GH	
Gain	100 kHz to 3.6 GHz 3.6 to 7.0 GHz	+20 dB nominal +35 dB nominal	
Noise figure	100 kHz to 3.6 GHz 3.6 to 7.0 GHz	15 dB nominal 9 dB nominal	

Dynamic Range Specifications

1 dB gain compression (two-tone)		Total power at input mixer		
	20 MHz to 26.5 GHz	+9 dBm nom		
Preamp on	10 MHz to 3.6 GHz 3.6 to 7.0 GHz	$\begin{aligned} & -10 \mathrm{dBm} \text { non } \\ & -26 \mathrm{dBm} \text { non } \end{aligned}$		
Displayed average noise level (DANL)				
(Input terminated, sample or average detector, averaging type $=$ Log, 0 dB input attenuation, IF Gain $=\mathrm{High}, 20$ to $30^{\circ} \mathrm{C}$)				
		Specification Typical		
	1 to 10 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.6 to 7.0 GHz 7.0 to 13.6 GHz 13.6 to 17.1 GHz 17.1 to 20.0 GHz 20.0 to 26.5 GHz	$\begin{aligned} & -147 \mathrm{dBm} \\ & -148 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -143 \mathrm{dBm} \\ & -137 \mathrm{dBm} \\ & -137 \mathrm{dBm} \\ & -134 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \hline-149 \mathrm{dBm} \\ & -150 \mathrm{dBm} \\ & -149 \mathrm{dBm} \\ & -149 \mathrm{dBm} \\ & -147 \mathrm{dBm} \\ & -142 \mathrm{dBm} \\ & -142 \mathrm{dBm} \\ & -140 \mathrm{dBm} \end{aligned}$	
Preamp on	10 MHz to 2.1 GHz 2.1 to 3.6 GHz 3.6 to 7.0 GHz	$\begin{aligned} & -161 \mathrm{dBm} \\ & -160 \mathrm{dBm} \\ & -160 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \hline-163 \mathrm{dBm} \\ & -162 \mathrm{dBm} \\ & -162 \mathrm{dBm} \end{aligned}$	
Spurious responses				
Residual responses (Input terminated and 0 dB attenuation)	200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies	$\begin{aligned} & -100 \mathrm{dBm} \\ & -100 \mathrm{dBm} \text { nominal } \end{aligned}$		
Image responses	10 MHz to 3.6 GHz 3.6 to 13.6 GHz 13.6 to 17.1 GHz 17.1 to 22 GHz 22 to 26.5 GHz	-80 dBc (-103 dBc typical) -75 dBc (-87 dBc typical) -71 dBc (-85 dBc typical) -68 dBc (-82 dBc typical) -66 dBc (-78 dBc typical)		
LO related spurious ($\mathrm{f}>600 \mathrm{MHz}$ from carrier)	10 MHz to 3.6 GHz	$-90 \mathrm{dBc}+20$ logN 1 typical		
Other spurious $\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier	$-80 \mathrm{dBc}+20 \mathrm{xlogN}{ }^{1}$			
Second harmonic distortion (SHI)				
Source frequency			SHI (nominal)	
10 MHz to 1.8 GHz 1.75 to 7.0 GHz 7.0 to 11.0 GHz 11.0 to 13.25 GHz		$\begin{aligned} & +45 \mathrm{dBm} \\ & +65 \mathrm{dBm} \\ & +55 \mathrm{dBm} \\ & +50 \mathrm{dBm} \end{aligned}$		
Third-order intermodulation distortion (TOI)				
(Two -30 dBm tones at input mixer with tone separation >5 times IF prefilter bandwidth, 20 to $30^{\circ} \mathrm{C}$, see Specifications Guide for IF prefilter bandwidths)				
		Distortion	TOI	TOI (typical)
	100 to 400 MHz 400 MHz to 1.7 GHz 1.7 to 3.6 GHz 3.6 to 5.1 GHz 5.1 to 7.0 GHz 7.0 to 13.6 GHz 13.6 to 26.5 GHz	$\begin{aligned} & -80 \mathrm{dBc} \\ & -82 \mathrm{dBc} \\ & -86 \mathrm{dBc} \\ & -82 \mathrm{dBc} \\ & -86 \mathrm{dBc} \\ & -82 \mathrm{dBc} \\ & -78 \mathrm{dBc} \end{aligned}$	$\begin{aligned} & +10 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +11 \mathrm{dBm} \\ & +9 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \hline+14 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +14 \mathrm{dBm} \end{aligned}$
Preamp on	30 MHz to 3.6 GHz 3.6 to 7 GHz	-90 dBc nom -64 dBc nom		0 dBm nominal -18 dBm nominal

[^1]

Figure 1. Nominal dynamic range - Band 0, for second and third order distortion, 9 kHz to 3.6 GHz

Figure 2. Nominal dynamic range - Bands 1 to 4, for second and third order distortion, 3.6 GHz to 26.5 GHz

Phase noise 1	Offset	Specification	Typical
Noise sidebands	100 Hz	$-84 \mathrm{dBc} / \mathrm{Hz}$	$-88 \mathrm{dBc} / \mathrm{Hz}$
$\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$	1 kHz		$-98 \mathrm{dBc} / \mathrm{Hz}$ nominal
	10 kHz	$-99 \mathrm{dBc} / \mathrm{Hz}$	$-102 \mathrm{dBc} / \mathrm{Hz}$
	100 kHz	$-112 \mathrm{dBc} / \mathrm{Hz}$	$-114 \mathrm{dBc} / \mathrm{Hz}$
	1 MHz	$-132 \mathrm{dBc} / \mathrm{Hz}$	$-135 \mathrm{dBc} / \mathrm{Hz}$
	10 MHz		$-143 \mathrm{dBc} / \mathrm{Hz}$ nominal

1. For nominal values, refer to Figure 3.

Figure 3. Nominal phase noise at different center frequencies

PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$)	$\pm 0.94 \mathrm{~dB}$ ($\pm 0.30 \mathrm{~dB} 95 \mathrm{th}$ percentile)	
Occupied bandwidth		
Frequency accuracy	\pm [span/1000] nominal	
Adjacent channel power		
Accuracy, W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate
MS	$\pm 0.22 \mathrm{~dB}$	$\pm 0.34 \mathrm{~dB}$
BTS	$\pm 1.07 \mathrm{~dB}$	$\pm 1.00 \mathrm{~dB}$
Dynamic range (typical)		
Without noise correction	-68 dB	-74 dB
With noise correction	$-73 \mathrm{~dB}$	$-76 \mathrm{~dB}$
Offset channel pairs measured	1 to 6	
ACP measurement and transfer time (fast method)	14 ms nominal ($\sigma=0.2 \mathrm{~dB}$)	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10th	
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in \%	
Intermod (TOI)	Measure the third-order products and intercepts from two tones	
Burst power		
Methods	Power above threshold, power within burst width	
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width	
Spurious emission		
W-CDMA (1 to 3.6 GHz) table-driven spurious signals; search across regions		
Dynamic range Absolute sensitivity	$\begin{aligned} & 93.1 \mathrm{~dB} \\ & -79.4 \mathrm{dBm} \end{aligned}$	(98.4 dB typical) (-85.4 dBm typical)
Spectrum emission mask (SEM)		
cdma2000® ${ }^{\circledR} 750 \mathrm{kHz}$ offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity Relative accuracy	$\begin{aligned} & 74.0 \mathrm{~dB} \\ & -94.7 \mathrm{dBm} \\ & \pm 0.11 \mathrm{~dB} \end{aligned}$	(81.0 dB typical) (-100.7 dBm typical)
3GPP W-CDMA (2.515 MHz offset) Relative dynamic range (30 kHz RBW) Absolute sensitivity Relative accuracy	$\begin{aligned} & 76.5 \mathrm{~dB} \\ & -94.7 \mathrm{dBm} \\ & \pm 0.12 \mathrm{~dB} \end{aligned}$	(83.9 dB typical) (-100.7 dBm typical)

General Specifications

Temperature range

Operating	0 to $55^{\circ} \mathrm{C}$
Storage	-40 to $65^{\circ} \mathrm{C}$

EMC

Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC

- IEC/EN 61010-1 2nd Edition
- Canada: CSA C22.2 No. 61010-1
- USA: UL 61010-1 2nd Edition

Audio noise	Geraeuschemission
Acoustic noise emission	LpA $<70 \mathrm{~dB}$
LpA $<70 \mathrm{~dB}$	Am Arbeitsplatz
Operator position	Normaler Betrieb
Normal position	Nach DIN 45635 t.19
Per ISO 7779	
Environmental stress	

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements	
Voltage and frequency (nominal)	$\begin{aligned} & 100 \text { to } 120 \mathrm{~V}, 50 / 60 / 400 \mathrm{~Hz} \\ & 220 \text { to } 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \end{aligned}$
Power consumption On Standby	390 W maximum 20 W
Display	
Resolution Size	$\begin{aligned} & 1024 \times 768, \text { XGA } \\ & 213 \mathrm{~mm} \text { (8.4 in.) diagonal (nominal) } \end{aligned}$
Data storage	
Internal External	$>=80 \mathrm{~GB}$ nominal (removable solid state drive) Supports USB 2.0 compatible memory devices
Weight (without options)	
Net Shipping	$16 \mathrm{~kg}(35 \mathrm{lbs})$ nominal $28 \mathrm{~kg}(62 \mathrm{lbs})$ nominal
Dimensions	
Height Width Length	177 mm (7.0 in) 426 mm (16.8 in) 368 mm (14.5 in)
Warranty	

The EXA signal analyzer is supplied with a one-year warranty

Calibration cycle

The recommended calibration cycle is two years; calibration services are available through Agilent service centers

Inputs and Outputs

Front panel	
RF input Connector	Type-N female, 50Ω nominal
Probe power Voltage/current	$+15 \mathrm{Vdc}, \pm 7 \%$ at 150 mA max nominal $-12.6 \mathrm{Vdc}, \pm 10 \%$ at 150 mA max nominal
USB 2.0 ports Master (2 ports) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal
Rear panel	
10 MHz out Connector Output amplitude Frequency	BNC female, 50Ω nominal $\geq 0 \mathrm{dBm}$ nominal $10 \mathrm{MHz} \pm$ (10 MHz x frequency reference accuracy)
Ext Ref In Connector Input amplitude range Input frequency Frequency lock range	BNC female, 50Ω nominal -5 to 10 dBm nominal 10 MHz nominal $\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs Connector Impedance Trigger level range	BNC female $>10 \mathrm{k} \Omega$ nominal -5 to 5 V
Trigger 1 and 2 outputs Connector Impedance Level	BNC female 50Ω nominal 5 V TTL nominal
Monitor output Connector Format Resolution	VGA compatible, 15 -pin mini D-SUB XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB 1024×768
Noise source drive +28 V (pulsed) Connector	BNC female
SNS Series noise source	
Anolog out Connector	BNC female (used by Option YAS)
USB 2.0 ports Master (4 ports) Standard Connector Output current Slave (1 port) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal Compatible with USB 2.0 USB Type-B female 0.5 A nominal

Rear panel	
GPIB interface Connector GPIB codes GPIB mode	IEEE-488 bus connector SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0 Controller or device
LAN TCP/IP interface Standard Connector	1000Base-T RJ45 Ethertwist
IF output Connector Impedance	SMA female, shared by Option CR3 and CRP 50Ω nominal
Wideband IF output, Option CR3	
Center frequency SA mode or I/Q analyzer with IF BW $\leq 25 \mathrm{MHz}$ with Option B40	$\begin{aligned} & 322.5 \mathrm{MHz} \\ & 250 \mathrm{MHz} \end{aligned}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth Low band High band, with preselector High band, with preselector bypassed	Up to 140 MHz (nominal) Depends on center frequency Up to 500 MHz
Programmable IF output, Option CRP	
Center frequency Range Resolution	10 to 75 MHz (user selectable) $0.5 \mathrm{MHz}$
Conversion gain	-1 to +4dB (nominal) plus RF frequency response
Bandwidth Output at 70 MHz Low band or high band with preselector bypassed ${ }^{1}$ Preselected band	100 MHz (nominal) Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

[^2]
I/O Analyzer

Frequency				
Frequency span Standard instrument Option B25 Option B40	10 Hz to 10 10 Hz to 25 10 Hz to 40			
Resolution bandwidth (spectrum measurement)				
Range Overall $\begin{aligned} & \text { Span }=1 \mathrm{MHz} \\ & \text { Span }=10 \mathrm{kHz} \\ & \text { Span }=100 \mathrm{~Hz} \end{aligned}$	100 mHz to 50 Hz to 1 N 1 Hz to 10 k 100 mHz to			
Window shapes				
Flat top, Uniform, Hanning, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB , K-B 90 dB and K-B 110 dB)				
Analysis bandwidth				
Standard instrument Option B25 Option B40	10 Hz to 10 MHz 10 Hz to 25 MHz 10 Hz to 40 MHz			
IF frequency response (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30{ }^{\circ} \mathrm{C}$)				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
≤ 3.6	≤ 10	n/a	$\pm 0.40 \mathrm{~dB}$	0.04 dB nominal
$3.6<\mathrm{f} \leq 26.5$	≤ 10	on		0.25 dB nominal
$3.6<\mathrm{f} \leq 26.5$	≤ 10	off ${ }^{1}$	$\pm 0.45 \mathrm{~dB}$	0.04 dB nominal

IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
≤ 3.6	≤ 10	n / a	$0.5{ }^{\circ}$	$0.2{ }^{\circ}$
$3.6<\mathrm{f} \leq 26.5$	≤ 10	on	$1.5{ }^{\circ}$	$0.2{ }^{\circ}$
$3.6<\mathrm{f} \leq 26.5$	≤ 10	off ${ }^{1}$	$0.5{ }^{\circ}$	$0.2{ }^{\circ}$
Data acquisition (10 MHz IF path)				
Time record length IO analyzer	4,000,000 IO sample pairs			
89600 VSA software or N9064A VXA	32-bit packing	64-bit packing		Memory
Option DP2, B40 or MPB	536 MSa	268 MSa		2 GB
None of the above	62.5 MSa	31.25 MSa		256 MB
Sample rate				
Option DP2, B40 or MPB	100 MSa /s			
None of the above	$90 \mathrm{MSa} / \mathrm{s}$			
ADC resolution				
Option DP2, B40 or MPB	16 bits			
None of the above	14 bits			
Option B25 25 MHz analysis bandwidth				
IF frequency response (B25 IF path)				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30{ }^{\circ} \mathrm{C}$)				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
≤ 3.6	10 to ≤ 25	n/a	$\pm 0.45 \mathrm{~dB}$	0.051 dB nominal
$3.6<\mathrm{f} \leq 26.5$	10 to ≤ 25	on		0.45 dB nominal
$3.6<\mathrm{f} \leq 26.5$	10 to ≤ 25	off ${ }^{1}$	$\pm 0.45 \mathrm{~dB}$	0.05 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$0.02 \leq f<3.6$	≤ 25	n / a	$0.5{ }^{\circ}$	$0.2{ }^{\circ}$
$3.6 \leq \mathrm{f} \leq 26.5$	≤ 25	on	$1.5{ }^{\circ}$	0.2°
$3.6 \leq f \leq 26.5$	≤ 25	off ${ }^{1}$	$0.5{ }^{\circ}$	0.2°
Data acquisition (B25 IF path)				
Time record length (IQ pairs) IO Analyzer	4,000,000 IO sample pairs			
89600 software or N9064A	32-bit packing	64-bit packing		Memory
Option DP2, B40 or MPB	536 MSa	268 MSa		2 GB
None of the above	62.5 MSa	31.25 MSa		256 MB
Sample rate				
Option DP2, B40 or MPB	$100 \mathrm{MSa} / \mathrm{s}$			
None of the above	$90 \mathrm{MSa} / \mathrm{s}$			
ADC resolution				
Option DP2, B40 or MPB	16 bits			
None of the above	14 bits			

[^3]
Option B40 40 MHz analysis bandwidth

IF frequency response (B40 IF path)
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $30^{\circ} \mathrm{C}$)

Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
$0.03 \leq \mathrm{f}<3.6$	≤ 40	n / a	$\pm 0.3 \mathrm{~dB}$	$\pm 0.08 \mathrm{~dB}$ nominal
$3.6 \leq \mathrm{f} \leq 26.5$	≤ 40	off 1	$\pm 0.25 \mathrm{~dB}$	$\pm 0.08 \mathrm{~dB}$ nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$0.02 \leq \mathrm{f}<3.6$	40	n / a	0.3° nominal	$0.06^{\circ}{ }^{\circ}$ nominal
$3.6 \leq \mathrm{f} \leq 26.5$	40	off ${ }^{1}$	0.7° nominal	0.17° nominal
Data acquisition (B40 IF path)		Specifications	Supplemental information	

Time record length (IO pairs) IO Analyzer	4,000,000 samples (1/0 pairs)		
89600 VSA software or N9064A VXA	32-bit packing	64-bit packing	2 GB total memory
Length (IO sample pairs) Length (time units)	536 MSa	268 MSa	Samples/(Span x 1.28)
Sample rate At ADC IO pairs	$200 \mathrm{Msa} / \mathrm{s}$		Span $\times 1.28$
ADC resolution	12 bits		

1. Option MPB is installed and enabled.

Related Literature

Brochure 5989-6527EN
Configuration Guide 5989-6531EN

For more information or literature resources please visit the web: www.agilent.com/find/exa

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Lx

www.Ixistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

 uwwagilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.Agilent
Advantage
Services
Agilent Advantage Services is com-
mitted to your success throughout
your equipment's lifetime. We share
measurement and service expertise
to help you create the products that
change our world. To keep you com-
petitive, we continually invest in tools
and processes that speed up calibra-
tion and repair, reduce your cost of
ownership, and move us ahead of
your development curve.
www.agilent.com/find/advantageservices
 1S0 9001:2008 www.agilent.com/quality
cdma $2000{ }^{\circledR}$ is a registered certification mark of the Telecommunications Industry Association. Used under license.

Windows ${ }^{\circledR}$ and MS Windows are U.S. registered trademarks of Microsoft ${ }^{\circledR}$ Corporation.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973500$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125$ £/minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: October 14, 2010
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2010
Printed in USA, December 23, 2010
5989-6529EN

Agilent Technologies

[^0]: 1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
 2. Sweep points $=101$.
[^1]: 1. N is the LO multiplication factor.
[^2]: 1. Option MPB installed and enabled.
[^3]: 1. Option MPB is installed and enabled.
