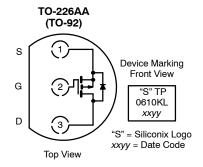
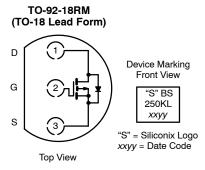
## **New Product**

# Vishay Siliconix

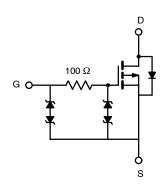
# P-Channel 60-V (D-S) MOSFET


| PRODUCT SUMMARY               |                               |                         |                    |  |  |  |  |
|-------------------------------|-------------------------------|-------------------------|--------------------|--|--|--|--|
| V <sub>(BR)DSS(min)</sub> (V) | $r_{DS(on)}(\Omega)$          | V <sub>GS(th)</sub> (V) | I <sub>D</sub> (A) |  |  |  |  |
| -60                           | 6 @ V <sub>GS</sub> = -10 V   | −1 to −3.0              | -0.27              |  |  |  |  |
|                               | 10 @ V <sub>GS</sub> = -4.5 V | -110-3.0                | -0.21              |  |  |  |  |

#### **FEATURES**


TrenchFET® Power MOSFET
 ESD Protected: 2000 V

#### **APPLICATIONS**


- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply, Converter Circuits
- Motor Control







Ordering Information: BS250KL-TR1



| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25°C UNLESS OTHERWISE NOTED) |                       |                                   |            |      |  |  |  |  |
|-------------------------------------------------------------------------|-----------------------|-----------------------------------|------------|------|--|--|--|--|
| Parameter                                                               |                       | Symbol                            | Limit      | Unit |  |  |  |  |
| Drain-Source Voltage                                                    |                       | V <sub>DS</sub>                   | -60        | ٧    |  |  |  |  |
| Gate-Source Voltage                                                     |                       | V <sub>GS</sub>                   | ±20        |      |  |  |  |  |
| Continuous Drain Current                                                | T <sub>A</sub> = 25°C |                                   | -0.27      | A    |  |  |  |  |
| Continuous Drain Current                                                | T <sub>A</sub> = 70°C | l <sub>D</sub>                    | -0.22      |      |  |  |  |  |
| Pulse Drain Current <sup>a</sup>                                        |                       | I <sub>DM</sub>                   | -1.0       |      |  |  |  |  |
| Power Dissipation                                                       | T <sub>A</sub> = 25°C | PD                                | 0.8        | w    |  |  |  |  |
| Power Dissipation                                                       | T <sub>A</sub> = 70°C | .0                                | 0.51       |      |  |  |  |  |
| Maximum Junction-to-Ambient                                             |                       | R <sub>thJA</sub>                 | 156        | °C/W |  |  |  |  |
| Operating Junction and Storage Temperature Range                        |                       | T <sub>J</sub> , T <sub>stg</sub> | -55 to 150 | °C   |  |  |  |  |

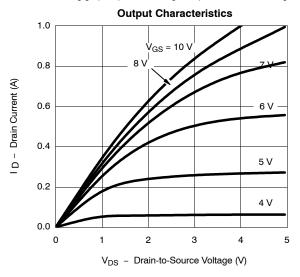
#### Notes

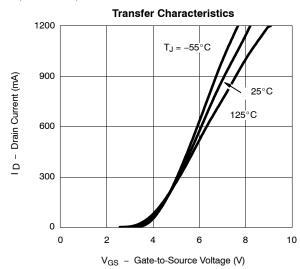
Document Number: 72712 S-40244—Rev. A, 16-Feb-04

a. Pulse width limited by maximum junction temperature.

## **Vishay Siliconix**

### **New Product**



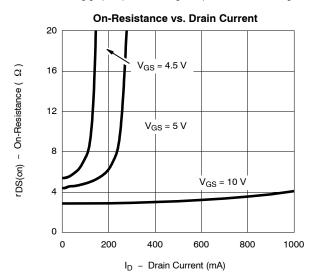


| SPECIFICATIONS (T <sub>A</sub> = 25°C UNLESS OTHERWISE NOTED) |                      |                                                                                                    |      |      |      |      |  |  |  |
|---------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|------|------|------|------|--|--|--|
| Parameter                                                     | Symbol               | Test Condition                                                                                     | Min  | Тур  | Max  | Unit |  |  |  |
| Static                                                        |                      |                                                                                                    | •    | •    |      | •    |  |  |  |
| Drain-Source Breakdown Voltage                                | V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_D = -10 \mu A$                                                            | -60  |      |      | .,   |  |  |  |
| Gate-Threshold Voltage                                        | V <sub>GS(th)</sub>  | $V_{DS} = V_{GS}, I_D = -250 \mu\text{A}$                                                          | -1   | -2.1 | -3.0 | ٧    |  |  |  |
| Gate-Body Leakage                                             |                      | $V_{DS}$ = 0 V, $V_{GS}$ = $\pm 20$ V                                                              |      |      | ±10  | μΑ   |  |  |  |
|                                                               |                      | $V_{DS}$ = 0 V, $V_{GS}$ = $\pm 10$ V                                                              |      |      | ±200 | nA   |  |  |  |
|                                                               | IGSS                 | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}, T_J = 85^{\circ}\text{C}$                        |      |      | ±500 |      |  |  |  |
|                                                               |                      | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$                                                   |      |      | ±100 | 1 '  |  |  |  |
| Zero Gate Voltage Drain Current                               |                      | $V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}$                                                     |      |      | -1   |      |  |  |  |
|                                                               | I <sub>DSS</sub>     | $V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$                        |      |      | -10  | μΑ   |  |  |  |
| 0.01.1.0.10                                                   |                      | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}$                                                  | -50  |      |      |      |  |  |  |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>   | $V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}$                                                   | -600 |      |      | mA   |  |  |  |
| Drain-Source On-Resistance <sup>a</sup>                       |                      | $V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ mA}$                                                    |      | 5.5  | 10   | Ω    |  |  |  |
|                                                               | r <sub>DS(on)</sub>  | $V_{GS} = -10 \text{ V}, I_D = -500 \text{ mA}$                                                    |      | 3.1  | 6    |      |  |  |  |
|                                                               |                      | $V_{GS}$ = -10 V, $I_D$ = -500 mA, $T_J$ = 125°C                                                   |      | 4.7  | 9    |      |  |  |  |
| Forward Transconductance <sup>a</sup>                         | 9fs                  | $V_{DS} = -10 \text{ V}, I_D = -100 \text{ mA}$                                                    |      | 180  |      | mS   |  |  |  |
| Diode Forward Voltage <sup>a</sup>                            | $V_{SD}$             | $I_S = -200 \text{ mA}, V_{GS} = 0 \text{ V}$                                                      |      | -0.9 | -1.4 | V    |  |  |  |
| Dynamic <sup>b</sup>                                          |                      |                                                                                                    | •    | •    |      | •    |  |  |  |
| Total Gate Charge                                             | Qg                   | $V_{DS} = -30 \text{ V}, V_{GS} = -15 \text{ V}, I_{D} \cong -500 \text{ mA}$                      |      | 1.7  | 3    | nC   |  |  |  |
| Gate-Source Charge                                            | $Q_{gs}$             |                                                                                                    |      | 0.26 |      |      |  |  |  |
| Gate-Drain Charge                                             | $Q_{gd}$             |                                                                                                    |      | 0.46 |      |      |  |  |  |
| Gate Resistance                                               | Rg                   |                                                                                                    |      | 285  |      | Ω    |  |  |  |
| Turn-On Time                                                  | t <sub>d(on)</sub>   |                                                                                                    |      | 2.4  | 5    |      |  |  |  |
|                                                               | t <sub>r</sub>       | $V_{DD} = -25 \text{ V}, R_L = 150 \Omega$<br>$I_D \cong -150 \text{ mA}, V_{GEN} = -10 \text{ V}$ |      | 15.5 | 25   | 1    |  |  |  |
| Turn-Off Time                                                 | t <sub>d(off)</sub>  | $R_{q} = 100 \text{ mA}, V_{GEN} = -10 \text{ V}$ $R_{q} = 10 \Omega$                              |      | 21   | 35   | ns   |  |  |  |
|                                                               | t <sub>f</sub>       | Ÿ                                                                                                  |      | 12.5 | 20   | 1    |  |  |  |

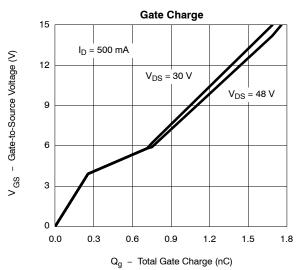
#### Notes

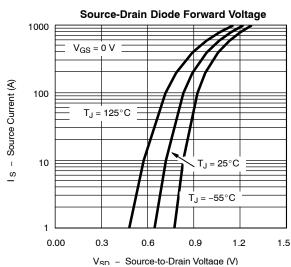
## TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.

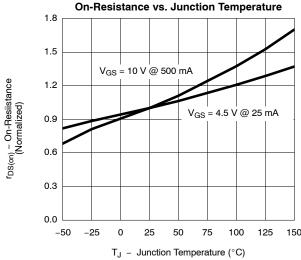


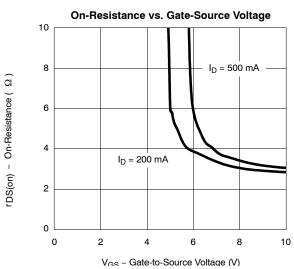




Pulse test: PW ≤300 ms duty cycle ≤2%.
Guaranteed by design, not subject to production testing.


## **New Product**

### TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.



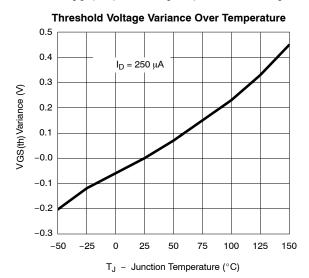


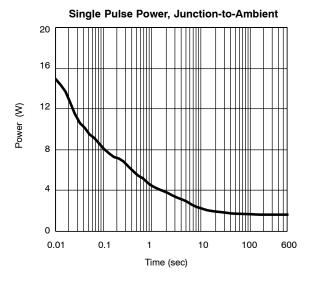


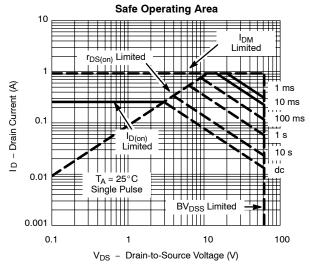


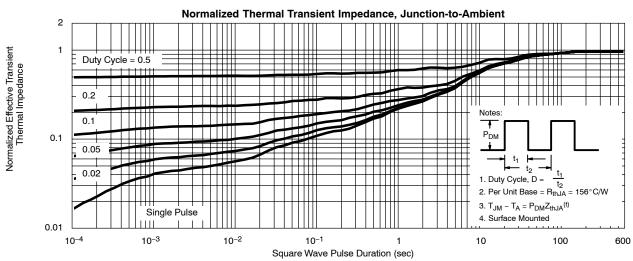






## **Vishay Siliconix**


### **New Product**





### TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

For the following graphs, p-channel negative polarities for all voltage and current values are represented as positive values.













Vishay

## **Disclaimer**

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com