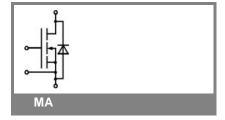
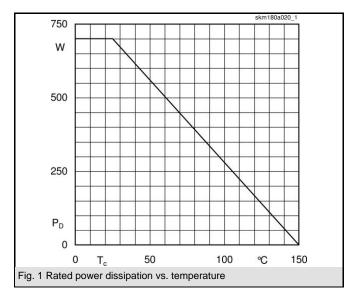
SKM 121AR

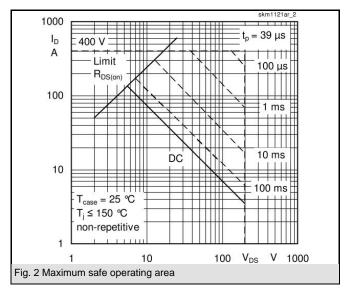
Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
V_{DS}		200	V				
I _D	T _s = 25 (80) °C	130 (95)	Α				
I _{DM}	1 ms	390	Α				
V_{GS}		± 20	V				
T_{vj} , (T_{stg})		- 40 + 150 (125)	°C				
V_{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F = - I _S		130	Α				
$I_{FM} = -I_{SM}$		390	Α				

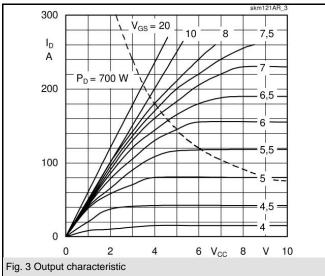
Power MOSFET Modules

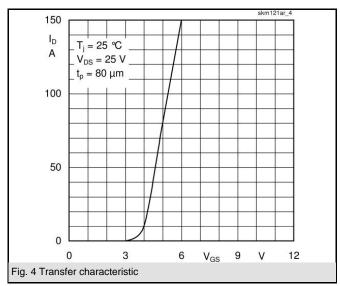
SKM 121AR

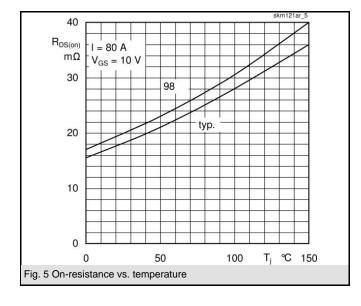

Features

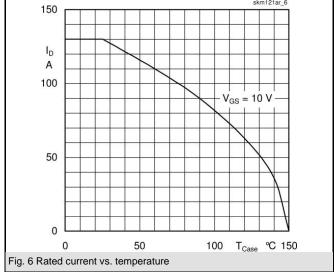

- N Channel, enhancement mode
- · Avalanche characteristics
- Short internal connections avoid oscillations
- Isolated copper baseplates
- All electrical connections on top for easy busbaring
- Large clearance (10mm) and creepage distances (13mm)
- UL recognized, file no. E 63 532

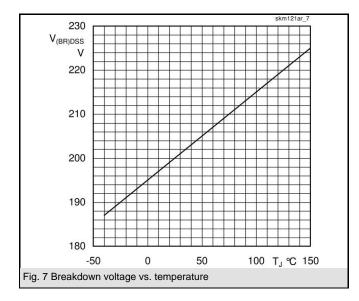

Typical Applications*

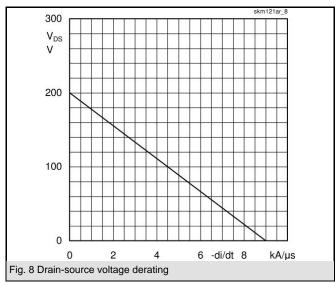

- Switched mode power supplies
- DC servo and robot drives
- DC choppers
- UPS equipment
- · Plasma cutting
- Not suitable for linear amplification

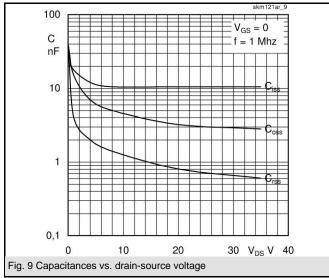

Characteristics T _c = 25 °C, unless otherwise specified								
Character			<u>, </u>					
Symbol	Conditions	min.	typ.	max.	Units			
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 0.25 \text{ mA}$	200			V			
$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	2,1	3	4	V			
I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 200 \text{ V},$ $T_i = 25 (125)^{\circ} \text{C}$		50 (300)	250 (1000)	μA			
I _{GSS}	$V'_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		10	100	nA			
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 80 \text{ A}$		18	20	mΩ			
g _{fs}	V _{DS} = 25 V, I _D = 80 A	60	75		S			
C _{CHC}	V _{GS} = 0, V _{DS} = 25 V, f = 1 MHz			160	pF			
C _{iss}			10	13	nF			
C _{oss}			3	4,5	nF			
C _{rss}			0,7	1	nF			
L _{DS}				20	nΗ			
t _{d(on)}	V _{DD} = 100 V, I _D = 80 A,		60		ns			
t _r	$V_{GS} = 10 \text{ V}, R_{G} = 3.3 \Omega$		60		ns			
$t_{d(off)}$			240		ns			
t _f			70		ns			
Inverse diode								
V_{SD}	I _F = 260 A; V _{GS} = 0 V		1,05	1,4	V			
t _{rr}	T _j = 25 (150) °C		400		ns			
Q_{rr}	T _j = 25 °C		4,3		μC			
I _{rr}	T _j = °C				Α			
Thermal o	Thermal characteristics							
R _{th(j-c)}	per MOSFET			0,18	K/W			
R _{th(c-s)}	M _s , surface 10 μm, per module			0,05	K/W			
Mechanical data								
M_s	to heatsink (M6)	4		5	Nm			
M _t	for terminals (M5)	2,5		3,5	Nm			
w				130	g			

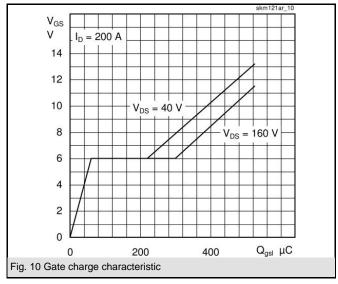




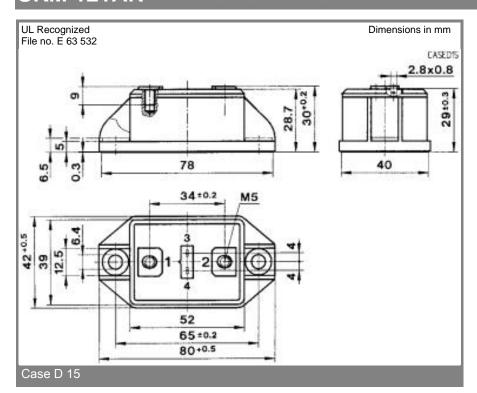


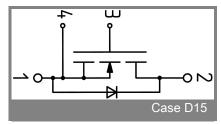






SKM 121AR





SKM 121AR

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.