

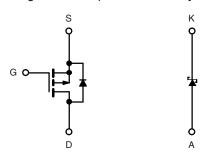
P-Channel 20-V (D-S) MOSFET with Schottky Diode

MOSFET PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$ $I_{D}(A)^{a}$ $Q_{g}(\Omega)$		Q _g (Typ.)			
- 20	0.058 at V _{GS} = - 4.5 V	6	5.5 nC			
- 20	0.100 at V _{GS} = - 2.5 V	6	0.0110			

SCHOTTKY PRODUCT SUMMARY					
V _{KA} (V)	V _F (V) Diode Forward Voltage	I _F (A) ^a			
20	0.375 at 1 A	2			

Ordering Information: Si5857DU-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- LITTLE FOOT® Plus Power MOSFET
- New Thermally Enhanced PowerPAK[®] ChipFET[®] Package
 - Small Footprint Area
 - Low On-Resistance
 - Thin 0.8 mm Profile
- Compliant to RoHS Directive 2002/95/EC

Pb-free RoHS COMPLIANT HALOGEN

FREE

APPLICATIONS

- · Charging Switch for Portable Devices
 - With Integrated Low V_F Trench Schottky Diode

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS $T_A = 25$	°C, unless ot	herwise note	ed	
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage (MOSFET)	V _{DS}	- 20		
Reverse Voltage (Schottky)		V _{KA}	20	V
Gate-Source Voltage (MOSFET)		V_{GS}	± 12	
	T _C = 25 °C		6 ^a	
Osstinas Pasis Ossas /T., 450 00\ (MOOFFT)	T _C = 70 °C	,	6 ^a	
Continuous Drain Current (T _J = 150 °C) (MOSFET)	T _A = 25 °C	I _D	- 5 ^{b, c}	
	T _A = 70 °C		- 4 ^{b, c}	
Pulsed Drain Current (MOSFET)	•	I _{DM}	- 20	Α
Continuous Course Courset (MOCFFT Diada Condustion)	T _C = 25 °C	I _S	- 6 ^a	
Continuous Source Current (MOSFET Diode Conduction)	T _A = 25 °C		1.9 ^{b, c}	1
Average Forward Current (Schottky)	I _F	2		
Pulsed Forward Current (Schottky)		I _{FM}	7	
	T _C = 25 °C	P _D	10.4	
Manipular Device Discipation (MOCFET)	T _C = 70 °C		6.7	\A/
Maximum Power Dissipation (MOSFET)	T _A = 25 °C		2.3 ^{b, c}	W
	T _A = 70 °C		1.5 ^{b, c}	
	T _C = 25 °C		7.8	
Marrian and David Dispination (Calcattle)	T _C = 70 °C	ь	5	w
Maximum Power Dissipation (Schottky)	T _A = 25 °C	P_{D}	2.1 ^{b, c}	- vv
	T _A = 70 °C		1.3 ^{b, c}	7
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	- °C	
Soldering Recommendation (Peak Temperature) ^{d, e}		<u> </u>	260	7

Document Number: 73696 S09-2111-Rev. D, 12-Oct-09

Si5857DU

Vishay Siliconix

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient (MOSFET) ^{b, f}	t ≤ 5 s	R_{thJA}	43	55			
Maximum Junction-to-Case (Drain) (MOSFET)		R _{thJC}	9.5	12	°C/W		
Maximum Junction-to-Ambient (Schottky) ^{b, g}	t ≤ 5 s	R_{thJA}	49	61	C/VV		
Maximum Junction-to-Case (Drain) (Schottky)		R _{thJC}	13	16			

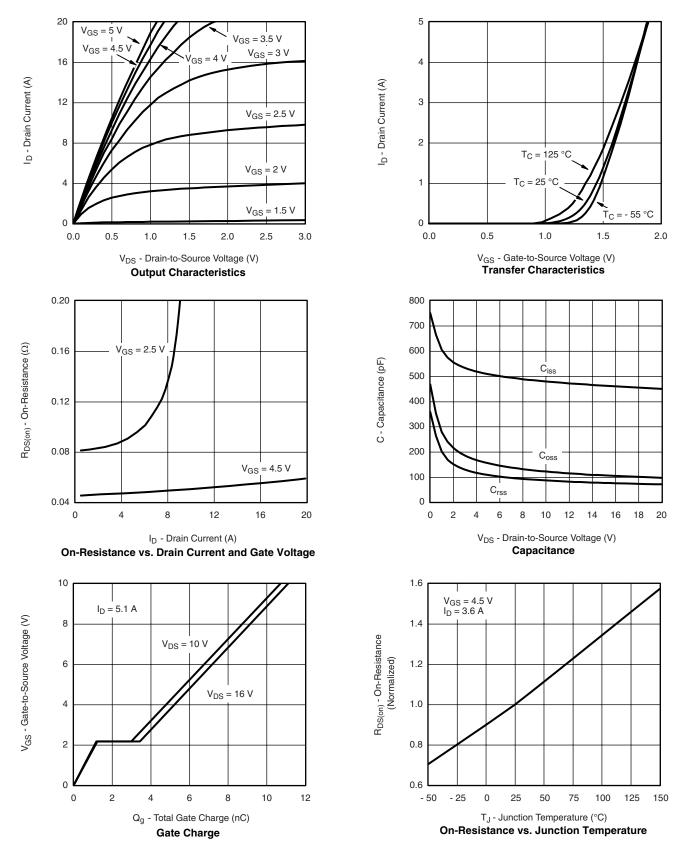
Notes:

- a. Package limited.
- b. Surface Mounted on FR4 board.
- $c. \ t \leq 5 \ s.$
- d. See Solder Profile (www.vishay.com/doc?73257). The PowerPAK ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under Steady State conditions for MOSFETS is 105 °C/W.
- g. Maximum under Steady State conditions for Schottky is 110 °C/W.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static				•		
Drain-Source Breakdown Voltage	V _{DS}	V_{GS} = 0 V, I_D = - 250 μA	- 20			V
V _{DS} Temperature Coefficient	$\Delta V_{DS/TJ}$	I _D = - 250 μA		- 19		mV/°C
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)/TJ}$	1D = - 230 μΑ		2.6		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.6		- 1.5	V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			± 100	ns
Zoro Cata Valtaga Drain Current	l	V _{DS} = - 20 V, V _{GS} = 0 V			- 1	μΑ
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = - 20 V, V_{GS} = 0 V, T_{J} = 55 °C			- 10	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 20			Α
	В	$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$		0.048	0.058	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -1 \text{ A}$		0.081	0.100	Ω
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 3.6 A		10		S
Dynamic ^b						
Input Capacitance	C _{iss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		480		pF
Output Capacitance	C _{oss}			125		
Reverse Transfer Capacitance	C _{rss}			90		
Total Gate Charge	Q _g	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -5 \text{ A}$		11	17	
	ag			5.5	8.5	nC
Gate-Source Charge	Q_{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5 \text{ A}$		1.2		
Gate-Drain Charge	Q_{gd}			1.8		
Gate Resistance	R_g	f = 1 MHz		9		Ω
Turn-On Delay Time	t _{d(on)}			11	20	
Rise Time	t _r	V_{DD} = - 10 V, R_L = 2.5 Ω		42	65	
Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ - 4 A, V_GEN = - 4.5 V, R_g = 1 Ω		33	50	
Fall Time	t _f			50	75	
Turn-On Delay Time	t _{d(on)}			5	10	ns
Rise Time	t _r	V_{DD} = - 10 V, R_L = 2.5 Ω		15	25	
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ - 4 A, $V_{GEN}=$ - 10 V, $R_g=$ 1 Ω		25	40	
Fall Time	t _f			10	20	1

SPECIFICATIONS $T_J = 25 ^{\circ}\text{C}$, unless otherwise noted								
Parameter	Symbol	Test Conditions M		Тур.	Max.	Unit		
Drain-Source Body Diode Characteristics								
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 6	^		
Pulse Diode Forward Current	I _{SM}				- 20	Α		
Body Diode Voltage	V_{SD}	I _S = -4 A, V _{GS} = 0 V		- 0.9	- 1.2	V		
Body Diode Reverse Recovery Time	t _{rr}			25	50	ns		
Body Diode Reverse Recovery Charge	Q _{rr}	I _F = - 4 A dl/dt = 100 A/μs TJ = 25 °C		10	20	nC		
Reverse Recovery Fall Time	t _a	1 = -4 Α απαι = 100 Απμο 10 = 25 Ο		9		no		
Reverse Recovery Rise Time	t _b			16		ns		

Notes:

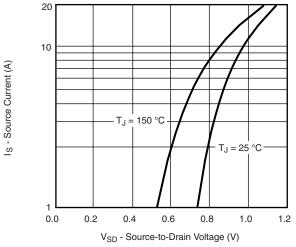

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

SCHOTTKY SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted								
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Forward Voltage Drop	V _F	I _F = 1 A		0.34	0.375	V		
		I _F = 1 A, T _J = 125 °C		0.255	0.290			
Maximum Reverse Leakage Current	I _{rm}	V _R = 20 V		0.05	0.500			
		V _R = 20 V, T _J = 85 °C		2	20	mA		
		V _R = 20 V, T _J = 125 °C		10	100			
Junction Capacitance	C _T	V _R = 10 V		90		pF		

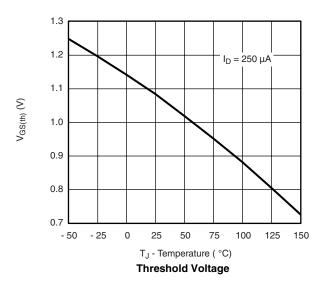
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY

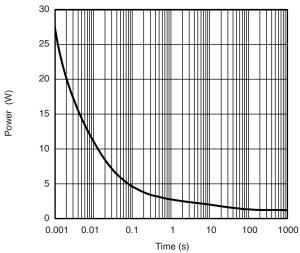
MOSFET TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



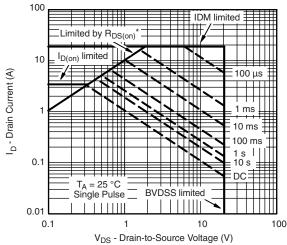
4.5



MOSFET TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



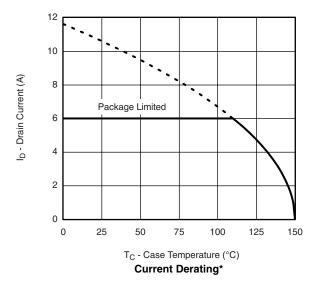
Source-Drain Diode Forward Voltage

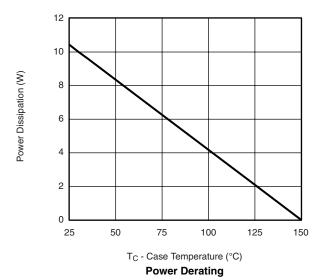


0.16 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})}$ - Drain-to-Source On-Resistance (Ω) $I_D = 3.6 A$ 0.14 0.12 0.10 T_A = 125 °C 0.08 0.06 T_A = 25 °C 0.04 2.0 2.5 3.0 3.5

V_{GS} - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage

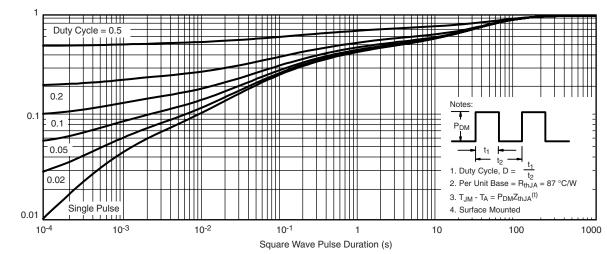
Single Pulse Power, Junction-to-Ambient



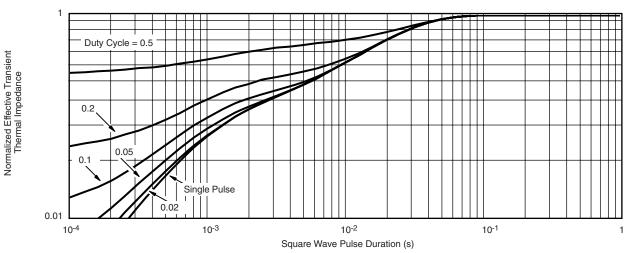

* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Case

MOSFET TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

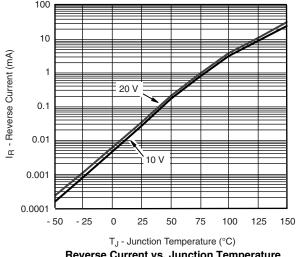


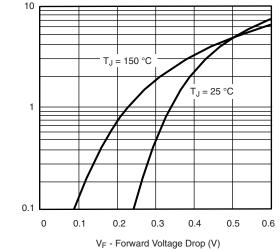
^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.



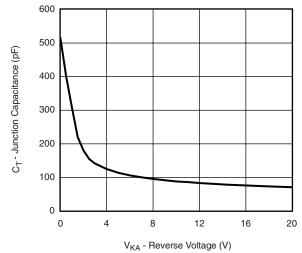
Normalized Effective Transient Thermal Impedance

MOSFET TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

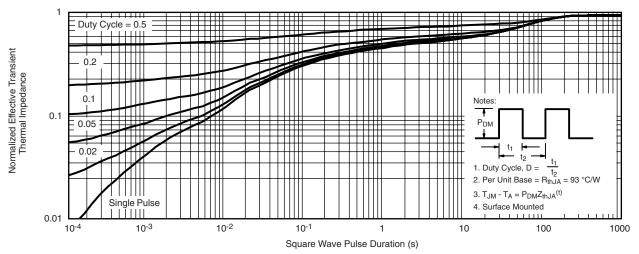

Normalized Thermal Transient Impedance, Junction-to-Ambient



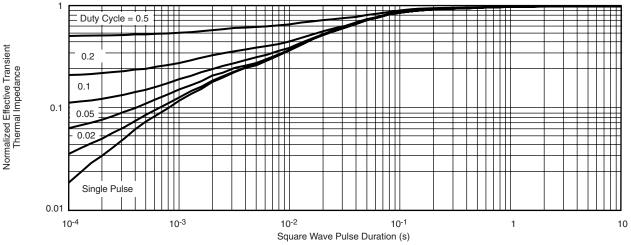
Normalized Thermal Transient Impedance, Junction-to-Case


SCHOTTKY TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Reverse Current vs. Junction Temperature



I_F - Forward Current (A)


Capacitance

SCHOTTKY TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73696.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1