P-Channel 1.5-V (G-S) MOSFET

PRODUCT SUMMARY			
$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}(\Omega)$	$\mathrm{I}_{\mathrm{D}}(\mathrm{A})^{\mathrm{e}}$	Q_{g} (Typ.)
- 8	0.036 at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	-6	14 nC
	0.045 at $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$	-6	
	0.056 at $\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$	-6	
	0.077 at $\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}$	-6	

Si5499DC-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET ${ }^{\circledR}$ Power MOSFET: 1.5 V Rated
- Ultra-Low On-Resistance

APPLICATIONS

- Load Switch for Portable Devices
- Guaranteed Operation at $\mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}$ Critical for Optimized Design and Longer Battery Life

P-Channel MOSFET

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		$V_{\text {DS }}$	-8	V
Gate-Source Voltage		V_{GS}	± 5	
Continuous Drain Current ($\left.\mathrm{T}_{J}=150^{\circ} \mathrm{C}\right)^{\text {a, b }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	-6 ${ }^{\text {e }}$	A
	$\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$		$-6^{\text {e }}$	
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-6^{\text {a,b, e }}$	
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		$-5.6^{\text {a, b }}$	
Pulsed Drain Current (10 $\mu \mathrm{s}$ Pulse Width)		IDM	- 25	
Continuous Source-Drain Diode Current ${ }^{\text {a }}$, ${ }^{\text {b }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Is	-5.2	
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-2.1{ }^{\text {a, b }}$	
Maximum Power Dissipation ${ }^{\text {a, b }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	6.2	W
	$\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$		4	
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$2.5{ }^{\text {a, b }}$	
	$\mathrm{T}_{\text {A }}=70^{\circ} \mathrm{C}$		$1.6{ }^{\text {a, b }}$	
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	- 55 to 150	${ }^{\circ} \mathrm{C}$
Soldering Recommendations (Peak Temperature) ${ }^{\text {c, } \mathrm{d}}$			260	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.
b. $t=5 \mathrm{~s}$.
c. See Solder Profile (www.vishay.com/ppg?73257). The ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
d. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
e. Package limited.

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ${ }^{\mathrm{a}, \mathrm{b}}$	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{R}_{\mathrm{thJA}}$	48	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction-to-Foot (Drain)	Steady State	$\mathrm{R}_{\mathrm{th} \mathrm{hF}}$	17	20	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.
b. Maximum under Steady State conditions is $95^{\circ} \mathrm{C} / \mathrm{W}$.

SPECIFICATIONS $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted						
Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V_{DS}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-8			V
$\mathrm{V}_{\text {DS }}$ Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{DS}} / \mathrm{T}_{\mathrm{J}}$	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$		6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$ Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})} / \mathrm{T}_{\mathrm{J}}$			2.3		
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.35		-0.8	V
		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-5 \mathrm{~mA}$		-0.55		
Gate-Source Leakage	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 5 \mathrm{~V}$			± 100	nA
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=55^{\circ} \mathrm{C}$			-10	
On-State Drain Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{DS}} \leq 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	-25			A
Drain-Source On-State Resistance ${ }^{\text {a }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.1 \mathrm{~A}$		0.030	0.036	Ω
		$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.6 \mathrm{~A}$		0.037	0.045	
		$\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-4.3 \mathrm{~A}$		0.046	0.056	
		$\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.3 \mathrm{~A}$		0.057	0.077	
Forward Transconductance ${ }^{\text {a }}$	g_{fs}	$V_{D S}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.1 \mathrm{~A}$		18		S
Dynamic ${ }^{\text {b }}$						
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\mathrm{V}_{\mathrm{DS}}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		1290		pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$			420		
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$			270		
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{DS}}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6 \mathrm{~A}$		23	35	nC
		$\mathrm{V}_{\mathrm{DS}}=-4 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6 \mathrm{~A}$		14	21	
Gate-Source Charge	Q_{gs}			1.7		
Gate-Drain Charge	Q_{gd}			2.7		
Gate Resistance	R_{g}	$\mathrm{f}=1 \mathrm{MHz}$		8		Ω
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.7 \Omega \\ \mathrm{I}_{\mathrm{D}} \cong-5.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=1 \Omega \end{gathered}$		10	15	ns
Rise Time	t_{r}			70	110	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$			60	90	
Fall Time	t_{f}			30	45	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.7 \Omega \\ \mathrm{I}_{\mathrm{D}} \cong-5.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-8 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=1 \Omega \end{gathered}$		8	15	
Rise Time	t_{r}			70	110	
Turn-Off Delay Time	$t_{\text {d(off) }}$			55	85	
Fall Time	t_{f}			55	85	

SPECIFICATIONS $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted						
Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Drain-Source Body Diode Characteristics						
Continuous Source-Drain Diode Current	Is	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			-6	
Pulse Diode Forward Current	$\mathrm{I}_{\text {SM }}$				-25	A
Body Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-2.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-0.7	-1.2	V
Body Diode Reverse Recovery Time	t_{rr}	$\mathrm{I}_{\mathrm{F}}=-5.6 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		45	70	ns
Body Diode Reverse Recovery Charge	Q_{rr}			18	27	nC
Reverse Recovery Fall Time	t_{a}			18		ns
Reverse Recovery Rise Time	t_{b}			17		ns

Notes:
a. Pulse test; pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Junction Temperature

Si5499DC
Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

[^0]Si5499DC
Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73321.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: * The power dissipation P_{D} is based on $T_{J(\max)}=150^{\circ} \mathrm{C}$, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

