High speed DuoPack: IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel diode

Features:

TRENCHSTOP™ technology offering

- very low $\mathrm{V}_{\mathrm{CEsat}}$
- low EMI
- Very soft, fast recovery anti-parallel diode
- maximum junction temperature $175^{\circ} \mathrm{C}$
- qualified according to JEDEC for target applications
- Pb-free lead plating; RoHS compliant
- complete product spectrum and PSpice Models:
http://www.infineon.com/igbt/

Applications:

- uninterruptible power supplies
- welding converters
- converters with high switching frequency

Type	VCe	/c	$V_{\text {CEsat }}, T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$	$T_{\text {vjmax }}$	Marking	Package
IKW25N120H3	1200V	25A	2.05 V	$175{ }^{\circ} \mathrm{C}$	K25H1203	PG-TO247-3

Maximum ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {Ce }}$	1200	V
DC collector current, limited by $T_{\text {vjmax }}$ $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	c	$\begin{aligned} & 50.0 \\ & 25.0 \end{aligned}$	A
Pulsed collector current, t_{p} limited by $T_{\text {vjmax }}$	/Cpuls	100.0	A
Turn off safe operating area $V_{\text {CE }} \leq 1200 \mathrm{~V}, T_{\mathrm{vj}} \leq 175^{\circ} \mathrm{C}$	-	100.0	A
Diode forward current, limited by T_{vjmax} $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $T_{\mathrm{C}}=100^{\circ} \mathrm{C}$	/f	$\begin{aligned} & 25.0 \\ & 12.5 \end{aligned}$	A
Diode pulsed current, t_{p} limited by T_{vjmax}	1 Fpuls	100.0	A
Gate-emitter voltage	VGE	± 20	V
Short circuit withstand time $V_{G E}=15.0 \mathrm{~V}, V_{\mathrm{CC}} \leq 600 \mathrm{~V}, T_{\mathrm{vj}} \leq 175^{\circ} \mathrm{C}$ Allowed number of short circuits <1000 Time between short circuits: ≥ 1.0 s	tsc	10	$\mu \mathrm{s}$
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Power dissipation $T_{\mathrm{C}}=100^{\circ} \mathrm{C}$	$P_{\text {tot }}$	$\begin{aligned} & 326.0 \\ & 156.0 \end{aligned}$	W
Operating junction temperature	T_{vj}	-40...+175	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Soldering temperature, wavesoldering 1.6 mm (0.063 in .) from case for 10 s		260	${ }^{\circ} \mathrm{C}$
Mounting torque, M3 screw Maximum of mounting processes: 3	M	0.6	Nm

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic $R_{\text {thj-c) }}$ 0.46 IGBT thermal resistance, junction - case $R_{\text {thj-c) }}$ 1.49	K/W			
Diode thermal resistance, junction - case	$R_{\text {thj-a) }}$		40	K/W
Thermal resistance junction - ambient				

Electrical Characteristic, at $\boldsymbol{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	V(BR)CES	$V_{G E}=0 \mathrm{~V}, \mathrm{l}=0.50 \mathrm{~mA}$	1200	-	-	V
Collector-emitter saturation voltage	VCEsat	$\begin{aligned} & V_{G E}=15.0 \mathrm{~V}, I_{\mathrm{C}}=25.0 \mathrm{~A} \\ & T_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=175^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 2.05 \\ & 2.50 \\ & 2.70 \end{aligned}$	2.40	V
Diode forward voltage	V/	$\begin{aligned} & V_{G E}=0 \mathrm{~V}, \mathbb{C}=12.5 \mathrm{~A} \\ & T_{\mathrm{Vj}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{Vj}}=175^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 1.80 \\ & 1.85 \end{aligned}$	2.35	V
Diode forward voltage	V/	$\begin{aligned} & V_{G E}=0 V, \mathbb{C}=25.0 \mathrm{~A} \\ & T_{v j}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=175^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 2.40 \\ & 2.60 \\ & 2.60 \end{aligned}$	3.05	V
Gate-emitter threshold voltage	$V \mathrm{GE}(\mathrm{th})$	$l_{\text {c }}=0.85 \mathrm{~mA}, V_{\text {CE }}=V_{\text {GE }}$	5.0	5.8	6.5	V
Zero gate voltage collector current	ICES	$\begin{aligned} & V_{\mathrm{CE}}=1200 \mathrm{~V}, V_{\mathrm{GE}}=0 \mathrm{~V} \\ & T_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{vj}}=175^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 250.0 \\ 2500.0 \end{gathered}$	$\mu \mathrm{A}$
Gate-emitter leakage current	/GES	$V_{\text {Ce }}=0 \mathrm{~V}, V_{\text {GE }}=20 \mathrm{~V}$	-	-	600	nA
Transconductance	$g_{\text {fs }}$	$V_{C E}=20 \mathrm{~V}, \mathrm{~L}=25.0 \mathrm{~A}$	-	13.0	-	S

Electrical Characteristic, at $\boldsymbol{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
Dynamic Characteristic						
Input capacitance	$C_{\text {ies }}$	$V_{\text {CE }}=25 \mathrm{~V}, V_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	1430	-	pF
Output capacitance	$C_{\text {oes }}$		-	115	-	
Reverse transfer capacitance	$C_{\text {res }}$		-	75	-	
Gate charge	QG	$\begin{aligned} & V C C=960 V, / C=25.0 \mathrm{~A}, \\ & V G E=15 V \end{aligned}$	-	115.0	-	$n C$
Internal emitter inductance measured 5 mm (0.197 in .) from case	$L E$		-	13.0	-	nH
Short circuit collector current Max. 1000 short circuits Time between short circuits: ≥ 1.0 s	/c(SC)	$\begin{aligned} & V_{\mathrm{GE}}=15.0 \mathrm{~V}, V_{\mathrm{CC}} \leq 600 \mathrm{~V}, \\ & T_{\mathrm{vj}} \leq 175^{\circ} \mathrm{C}, t_{\mathrm{sc}} \leq 10 \mu \mathrm{~s} \end{aligned}$	-	87	-	A

Switching Characteristic, Inductive Load, at $\boldsymbol{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	

IGBT Characteristic

Turn-on delay time	$t_{\text {d }}(0)$	$\begin{aligned} & \hline T_{\mathrm{Vj}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{C}=25.0 \mathrm{~A}, \\ & V_{\mathrm{GE}}=0.0 / 15.0 \mathrm{~V}, \\ & r_{\mathrm{G}}=23.0 \Omega, L_{\sigma}=80 \mathrm{nH}, \\ & C_{\sigma}=67 \mathrm{pF} \\ & L_{\sigma}, C_{\sigma} \text { from Fig. } \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	27	-	ns
Rise time	t_{r}		-	41	-	ns
Turn-off delay time	$t_{\text {d (off) }}$		-	277	-	ns
Fall time	$t_{\text {f }}$		-	17	-	ns
Turn-on energy	$E_{\text {on }}$		-	1.80	-	mJ
Turn-off energy	$E_{\text {off }}$		-	0.85	-	mJ
Total switching energy	$E_{\text {ts }}$		-	2.65	-	mJ

Anti-Parallel Diode Characteristic, at $T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

Diode reverse recovery time	$t \mathrm{r}$	$\begin{aligned} & T_{\mathrm{Vj}}=25^{\circ} \mathrm{C}, \\ & V_{\mathrm{R}}=600 \mathrm{~V}, \\ & /=25.0 \mathrm{~A}, \\ & d_{\mathrm{k}}^{\mathrm{k}} / d t=500 \mathrm{~A} / \mathrm{\mu s} \end{aligned}$	-	290	-	ns
Diode reverse recovery charge	Q_{rr}		-	1.20	-	$\mu \mathrm{C}$
Diode peak reverse recovery current	$I_{\text {rrm }}$		-	10.4	-	A
Diode peak rate of fall of reverse recovery current during t_{0}	$d i_{\mathrm{r}} / d t$		-	-150	-	A/ $\mu \mathrm{s}$

Switching Characteristic, Inductive Load, at $T_{\mathrm{vj}}=175^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{\text {d }}(0 n)$	$\begin{aligned} & T_{\mathrm{Vj}}=175^{\circ} \mathrm{C}, \\ & V_{C C}=600 \mathrm{~V}, \mathrm{C}=25.0 \mathrm{~A}, \\ & V_{\mathrm{GE}}=0.0 / 15.0 \mathrm{~V}, \\ & r_{G}=23.0 \Omega, L_{\sigma}=80 \mathrm{nH}, \\ & C_{\sigma}=67 \mathrm{pF} \\ & L_{\sigma}, C_{\sigma} \text { from Fig. } \mathrm{E} \end{aligned}$ Energy losses include "tail" and diode reverse recovery.	-	26	-	ns
Rise time	t_{r}		-	35	-	ns
Turn-off delay time	$t_{\text {d (off) }}$		-	347	-	ns
Fall time	$t_{\text {f }}$		-	50	-	ns
Turn-on energy	$E_{\text {on }}$		-	2.60	-	mJ
Turn-off energy	$E_{\text {off }}$		-	1.70	-	mJ
Total switching energy	$E_{\text {ts }}$		-	4.30	-	mJ

Anti-Parallel Diode Characteristic, at $\boldsymbol{T}_{\mathrm{vj}}=175^{\circ} \mathrm{C}$

Diode reverse recovery time	$t_{\text {r }}$	$\begin{aligned} & T_{\mathrm{vj}}=175^{\circ} \mathrm{C}, \\ & V_{R}=600 \mathrm{~V}, \\ & /=25.0 \mathrm{~A}, \\ & d \mathrm{k} / d t=500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	505	-	ns
Diode reverse recovery charge	Q_{rr}		-	2.75	-	$\mu \mathrm{C}$
Diode peak reverse recovery current	$\ell_{\text {rrm }}$		-	12.8	-	A
Diode peak rate of fall of reverse recovery current during t_{0}	$d i_{\text {r }} / d t$		-	-85	-	A/ $\mu \mathrm{s}$

Figure 1. Collector current as a function of switching frequency
($T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C}, D=0.5, V_{\mathrm{CE}}=600 \mathrm{~V}, V_{\mathrm{GE}}=15 / 0 \mathrm{~V}$, $R_{\mathrm{G}}=23 \Omega$)

Figure 3. Power dissipation as a function of case temperature
($T_{j} \leq 175^{\circ} \mathrm{C}$)

Figure 2. Forward bias safe operating area ($D=0, T_{\mathrm{C}}=25^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 175^{\circ} \mathrm{C} ; V_{\mathrm{GE}}=15 \mathrm{~V}$)

Figure 4. Collector current as a function of case temperature
($V_{G E} \geq 15 \mathrm{~V}, T_{j} \leq 175^{\circ} \mathrm{C}$)

Figure 5. Typical output characteristic ($T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

Figure 7. Typical transfer characteristic ($V_{C E}=20 \mathrm{~V}$)

Figure 6. Typical output characteristic ($T_{\mathrm{j}}=175^{\circ} \mathrm{C}$)

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{G E}=15 \mathrm{~V}$)

Figure 9. Typical switching times as a function of collector current
(ind. load, $T_{\mathrm{j}}=175^{\circ} \mathrm{C}, V_{C E}=600 \mathrm{~V}$,
$V_{G E}=15 / O V, R_{G}=23 \Omega$, test circuit in Fig. E)

Figure 11. Typical switching times as a function of junction temperature (ind. load, $V_{\mathrm{CE}}=600 \mathrm{~V}, V_{\mathrm{GE}}=15 / 0 \mathrm{~V}$, $/ \mathrm{c}=25 \mathrm{~A}, R_{\mathrm{G}}=23 \Omega$, test circuit in Fig. E)

Figure 10. Typical switching times as a function of gate resistor
(ind. load, $T_{\mathrm{j}}=175^{\circ} \mathrm{C}, V_{C E}=600 \mathrm{~V}$,
$V_{G E}=15 / 0 \mathrm{~V}$, $/ \mathrm{C}=25 \mathrm{~A}$, test circuit in Fig. E)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($/ \mathrm{c}=0.85 \mathrm{~mA}$)

Figure 13. Typical switching energy losses as a function of collector current (ind. load, $T_{\mathrm{j}}=175^{\circ} \mathrm{C}, V_{C E}=600 \mathrm{~V}$, $V_{G E}=15 / 0 \mathrm{~V}, R_{G}=23 \Omega$, test circuit in Fig. E)

Figure 15. Typical switching energy losses as a function of junction temperature (ind load, $V_{\mathrm{CE}}=600 \mathrm{~V}, V_{\mathrm{GE}}=15 / 0 \mathrm{~V}$, $\mathrm{c}=25 \mathrm{~A}$, $R_{\mathrm{G}}=23 \Omega$, test circuit in Fig. E)

Figure 14. Typical switching energy losses as a function of gate resistor
(ind. load, $T_{\mathrm{j}}=175^{\circ} \mathrm{C}, V_{C E}=600 \mathrm{~V}$, $V_{G E}=15 / 0 \mathrm{~V}$, $/ \mathrm{C}=25 \mathrm{~A}$, test circuit in Fig. E)

Figure 16. Typical switching energy losses as a function of collector emitter voltage (ind. load, $T_{\mathrm{j}}=175^{\circ} \mathrm{C}, V_{\mathrm{GE}}=15 / 0 \mathrm{~V}$, $\mathrm{Ic}_{\mathrm{c}}=25 \mathrm{~A}$, $R_{\mathrm{G}}=23 \Omega$, test circuit in Fig. E)

Figure 17. Typical gate charge
($\mathrm{c}=25 \mathrm{~A}$)

Figure 19. Typical short circuit collector current as a function of gate-emitter voltage ($V_{C E} \leq 600 \mathrm{~V}$, start at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$)

Figure 20. Short circuit withstand time as a function of gate-emitter voltage
($V_{\mathrm{CE}} \leq 600 \mathrm{~V}$, start at $T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$)

Figure 21. IGBT transient thermal impedance ($D=t_{\mathrm{p}} / \mathrm{T}$)

Figure 23. Typical reverse recovery time as a function of diode current slope ($V_{\mathrm{R}}=600 \mathrm{~V}$)

Figure 22. Diode transient thermal impedance as a function of pulse width ($D=t_{p} / T$)

Figure 24. Typical reverse recovery charge as a function of diode current slope ($V_{\mathrm{R}}=600 \mathrm{~V}$)

Figure 25. Typical reverse recovery current as a function of diode current slope ($V_{\mathrm{R}}=600 \mathrm{~V}$)

Figure 27. Typical diode forward current as a function of forward voltage

Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope
($V_{R}=600 \mathrm{~V}$)

Figure 28. Typical diode forward voltage as a function of junction temperature

PG-TO247-3

DIM	MILLIMETERS		INCHES					
	MIN	MAX	MIN	MAX				
A	4.90	5.16	0.193	0.203				
A1	2.27	2.53	0.089	0.099				
A2	1.85	2.11	0.073	0.083				
b	1.07	1.33	0.042	0.052				
b1	1.90	2.41	0.075	0.095				
b2	1.90	2.16	0.075	0.085				
b3	2.87	3.38	0.113	0.133				
b4	2.87	3.13	0.113	0.123				
c	0.55	0.68	0.022	0.027				
D	20.82	21.10	0.820	0.831				
D1	16.25	17.65	0.640	0.695				
D2	1.05	1.35	0.041	0.053				
E	15.70	16.03	0.618	0.631				
E1	13.10	14.15	0.516	0.557				
E2	3.68	5.10	0.145	0.201				
E3	1.68	2.60	0.066	0.102				
e						5.44		0.214
N	3			3				
L	19.80	20.31	0.780	0.799				
L1	4.17	4.47	0.164	0.176				
QP	3.50	3.70	0.138	0.146				
Q	5.49	6.00	0.216	0.236				
S	6.04	6.30	0.238	0.248				

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. Definition of diodes switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance $\mathrm{L}=180 \mathrm{nH}$, Stray capacitor $\mathrm{C}_{\sigma}=40 \mathrm{pF}$, Relief capacitor $\mathrm{C}_{\mathrm{r}}=1 \mathrm{nF}$ (only for ZVT switching)

Published by
Infineon Technologies AG
81726 Munich, Germany
81726 München, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

