

High speed DuoPack: IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel diode

Features:

TRENCHSTOP™ technology offering

- very low V_{CEsat}
- low EMI
- Very soft, fast recovery anti-parallel diode
- maximum junction temperature 175°C
- qualified according to JEDEC for target applications
- Pb-free lead plating; RoHS compliant
- complete product spectrum and PSpice Models:

http://www.infineon.com/igbt/

Applications:

- uninterruptible power supplies
- welding converters
- · converters with high switching frequency

Туре	V CE	<i>l</i> c	V _{CEsat} , T _{vj} =25°C	\mathcal{T}_{vjmax}	Marking	Package
IKW25N120H3	1200V	25A	2.05V	175°C	K25H1203	PG-TO247-3

Maximum ratings

Symbol	Value	Unit
V _{CE}	1200	V
<i>l</i> c	50.0 25.0	А
Cpuls	100.0	А
-	100.0	Α
Æ	25.0 12.5	А
/ F _{puls}	100.0	А
V _{GE}	±20	V
<i>t</i> sc	10	μs
P _{tot}	326.0 156.0	W
T_{vj}	-40+175	°C
\mathcal{T}_{stg}	-55+150	°C
	260	°C
М	0.6	Nm
	VCE /C /Cpuls - /F /Fpuls VGE /SC Ptot Tvj Tstg	VCE 1200 Ic 50.0 25.0 Ic 100.0 - 100.0 Image: Image

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic	·			
IGBT thermal resistance, junction - case	$R_{th(j-c)}$		0.46	K/W
Diode thermal resistance, junction - case	$R_{th(j-c)}$		1.49	K/W
Thermal resistance junction - ambient	$R_{th(j-a)}$		40	K/W

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Danamatan	Oh a l	Can ditions	Value			11	
Parameter	Symbol Conditions		min.	typ.	max.	Unit	
Static Characteristic							
Collector-emitter breakdown voltage	V(BR)CES	V _{GE} = 0V, I _C = 0.50mA	1200	-	-	V	
Collector-emitter saturation voltage	V∕CEsat	$V_{GE} = 15.0V$, $I_{C} = 25.0A$ $T_{Vj} = 25^{\circ}C$ $T_{Vj} = 125^{\circ}C$ $T_{Vj} = 175^{\circ}C$	- - -	2.05 2.50 2.70	2.40	V	
Diode forward voltage	VF	V _{GE} = 0V,	-	1.80 1.85	2.35	٧	
Diode forward voltage	Vŧ	$V_{GE} = 0V, \not = 25.0A$ $T_{Vj} = 25^{\circ}C$ $T_{Vj} = 125^{\circ}C$ $T_{Vj} = 175^{\circ}C$	- - -	2.40 2.60 2.60	3.05	V	
Gate-emitter threshold voltage	V _{GE(th)}	$I_C = 0.85$ mA, $V_{CE} = V_{GE}$	5.0	5.8	6.5	V	
Zero gate voltage collector current	/ces	$V_{CE} = 1200V, V_{GE} = 0V$ $T_{Vj} = 25^{\circ}C$ $T_{Vj} = 175^{\circ}C$	-		250.0 2500.0	μA	
Gate-emitter leakage current	/GES	V _{CE} = 0V, V _{GE} = 20V	-	-	600	nA	
Transconductance	<i>g</i> fs	$V_{CE} = 20V$, $I_{C} = 25.0A$	-	13.0	-	S	

2

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Parameter	Cumbal	Symbol Conditions		Value		
Parameter	Symbol Conditions		min.	typ.	max.	Unit
Dynamic Characteristic					•	
Input capacitance	Cies		-	1430	-	
Output capacitance	Coes	$V_{CE} = 25V$, $V_{GE} = 0V$, $f = 1MHz$	-	115	-	pF
Reverse transfer capacitance	Cres		-	75	-	1
Gate charge	Q_{G}	$V_{CC} = 960V$, $I_{C} = 25.0A$, $V_{GE} = 15V$	-	115.0	-	nC
Internal emitter inductance measured 5mm (0.197 in.) from case	LE		-	13.0	-	nH
Short circuit collector current Max. 1000 short circuits Time between short circuits: ≥ 1.0s	/c(sc)	V_{GE} = 15.0V, $V_{CC} \le 600$ V, $T_{vj} \le 175^{\circ}$ C, $t_{SC} \le 10 \mu$ s	-	87	-	А

Switching Characteristic, Inductive Load, at T_{vj} = 25°C

Developmentary	Cumbal	ool Conditions		Value		
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic	•					
Turn-on delay time	t _{d(on)}	T _{vj} = 25°C,	-	27	-	ns
Rise time	<i>t</i> r	$V_{CC} = 600 \text{V}, I_C = 25.0 \text{A},$ $V_{GE} = 0.0/15.0 \text{V},$	-	41	-	ns
Turn-off delay time	t _{d(off)}	$r_{\rm G}$ = 23.0 Ω , $L_{\rm \sigma}$ = 80nH,	-	277	-	ns
Fall time	<i>t</i> _f	$\begin{array}{c} C_{\sigma} = 67 \text{pF} \\ L_{\sigma}, C_{\sigma} \text{ from Fig. E} \end{array}$	-	17	-	ns
Turn-on energy	E _{on}	Energy losses include "tail" and	-	1.80	-	mJ
Turn-off energy	E _{off}	diode reverse recovery.	-	0.85	-	mJ
Total switching energy	Ets		-	2.65	-	mJ

Anti-Parallel Diode Characteristic, at T_{vj} = 25°C

Diode reverse recovery time	<i>t</i> rr	$T_{\rm vj} = 25^{\circ}{\rm C},$	-	290	-	ns
Diode reverse recovery charge	Q _{rr}	<i>V</i> _R = 600V, <i>I</i> _F = 25.0A.	-	1.20	-	μC
Diode peak reverse recovery current	/ rrm	<i>di</i> ⊧/ <i>dt</i> = 500A/µs	-	10.4	-	Α
Diode peak rate of fall of reverse recovery current during &	di _{rr} /dt		ı	-150	-	A/µs

3

Switching Characteristic, Inductive Load, at T_{vj} = 175°C

Davamatar	Cyrach al	Va Conditions		Value	/alue	
Parameter	Symbol	Conditions	min. typ.		max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	<i>T</i> _{vj} = 175°C,	-	26	-	ns
Rise time	<i>t</i> r	V_{CC} = 600V, I_{C} = 25.0A, V_{GE} = 0.0/15.0V, I_{C} = 23.0Ω, I_{C} = 80nH, I_{C} = 67pF I_{C} = I_{C} from Fig. E Energy losses include "tail" and	-	35	-	ns
Turn-off delay time	<i>t</i> _{d(off)}		-	347	-	ns
Fall time	<i>t</i> f		-	50	-	ns
Turn-on energy	<i>E</i> on		-	2.60	-	mJ
Turn-off energy	E _{off}	diode reverse recovery.	-	1.70	-	mJ
Total switching energy	Ets		-	4.30	-	mJ

Anti-Parallel Diode Characteristic, at T_{vj} = 175°C

Diode reverse recovery time	<i>t</i> rr	$T_{vj} = 175^{\circ}C,$	-	505	-	ns
Diode reverse recovery charge	Q_{rr}	<i>V</i> _R = 600V, <i>I</i> _F = 25.0A.	-	2.75	-	μC
Diode peak reverse recovery current	/ rrm	<i>di</i> ⊧/ <i>dt</i> = 500A/µs	-	12.8	-	Α
Diode peak rate of fall of reverse recovery current during £	di _{rr} /dt		-	-85	-	A/µs

Figure 1. Collector current as a function of switching frequency ($7_{\rm i}$ ≤175°C, D=0.5, $V_{\rm CE}$ =600V, $V_{\rm GE}$ =15/0V, $R_{\rm G}$ =23 Ω)

Figure 2. Forward bias safe operating area (D=0, T_C =25°C, T_j ≤175°C; V_{GE} =15V)

Figure 3. Power dissipation as a function of case temperature (7i≤175°C)

Figure 4. Collector current as a function of case temperature ($V_{GE} \ge 15V$, $T_j \le 175$ °C)

Figure 5. Typical output characteristic $(T=25^{\circ}\text{C})$

Figure 6. Typical output characteristic

Figure 7. Typical transfer characteristic (V_{CE} =20V)

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (V_{GE} =15V)

Figure 9. Typical switching times as a function of collector current (ind. load, T_i=175°C, V_{CE}=600V, V_{GE}=15/0V, R_G=23Ω, test circuit in Fig. E)

Figure 10. Typical switching times as a function of gate resistor (ind. load, T_j =175°C, V_{CE} =600V, V_{GE} =15/0V, V_{CE} =25A, test circuit in Fig. E)

Figure 11. Typical switching times as a function of junction temperature (ind. load, V_{CE}=600V, V_{GE}=15/0V, I_C=25A, R_G=23Ω, test circuit in Fig. E)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature (\(\lambda = 0.85 mA \)

Figure 13. Typical switching energy losses as a function of collector current (ind. load, *T*_j=175°C, *V*_{CE}=600V, *V*_{GE}=15/0V, *R*_G=23Ω, test circuit in Fig. E)

Figure 14. Typical switching energy losses as a function of gate resistor (ind. load, T_j =175°C, V_{CE} =600V, V_{GE} =15/0V, I_{CE} =25A, test circuit in Fig. E)

Figure 15. Typical switching energy losses as a function of junction temperature (ind load, V_{CE}=600V, V_{GE}=15/0V, I_C=25A, R_G=23Ω, test circuit in Fig. E)

Figure 16. Typical switching energy losses as a function of collector emitter voltage (ind. load, T_j =175°C, V_{GE} =15/0V, I_{C} =25A, R_{G} =23 Ω , test circuit in Fig. E)

Figure 17. Typical gate charge

Figure 18. Typical capacitance as a function of collector-emitter voltage (\(\nu_{\mathrm{GE}} = 0 \nabla, f=1 \text{MHz}\)

Figure 19. Typical short circuit collector current as a function of gate-emitter voltage (VcE≤600V, start at 7j=25°C)

Figure 20. Short circuit withstand time as a function of gate-emitter voltage ($V_{CE} \le 600V$, start at $T_j \le 150$ °C)

Figure 21. IGBT transient thermal impedance $(D=t_0/T)$

Figure 22. Diode transient thermal impedance as a function of pulse width $(D=t_0/T)$

Figure 23. Typical reverse recovery time as a function of diode current slope (V_R =600V)

Figure 24. Typical reverse recovery charge as a function of diode current slope (V_R =600V)

Figure 25. Typical reverse recovery current as a function of diode current slope (V_R =600V)

Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope $(V_R=600V)$

Figure 27. Typical diode forward current as a function of forward voltage

Figure 28. Typical diode forward voltage as a function of junction temperature

PG-TO247-3

DIM	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
А	4.90	5.16	0.193	0.203	
A1	2.27	2.53	0.089	0.099	
A2	1.85	2.11	0.073	0.083	
b	1.07	1.33	0.042	0.052	
b1	1.90	2.41	0.075	0.095	
b2	1.90	2.16	0.075	0.085	
b3	2.87	3.38	0.113	0.133	
b4	2.87	3.13	0.113	0.123	
С	0.55	0.68	0.022	0.027	
D	20.82	21.10	0.820	0.831	
D1	16.25	17.65	0.640	0.695	
D2	1.05	1.35	0.041	0.053	
E	15.70	16.03	0.618	0.631	
E1	13.10	14.15	0.516	0.557	
E2	3.68	5.10	0.145	0.201	
E3	1.68	2.60	0.066	0.102	
е	5.	44	0.2	214	
N		3	;	3	
L	19.80	20.31	0.780	0.799	
L1	4.17	4.47	0.164	0.176	
øΡ	3.50	3.70	0.138	0.146	
Q	5.49	6.00	0.216	0.236	
S	6.04	6.30	0.238	0.248	

i, v di_{F}/dt $t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ t_{rrm} $Q_{s} = Q_{F} - 10\% I_{rrm}$ V_{R}

Figure C. Definition of diodes switching characteristics

Figure A. Definition of switching times

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance L= 180nH, Stray capacitor C_o = 40pF, Relief capacitor C_r = 1nF (only for ZVT switching)

Figure B. Definition of switching losses

Published by Infineon Technologies AG 81726 Munich, Germany 81726 München, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.