NPN Silicon RF Transistor

- For low current applications
- For oscillators up to 12 GHz
- Noise figure $F=1.25 \mathrm{~dB}$ at 1.8 GHz outstanding $G_{m s}=23 \mathrm{~dB}$ at 1.8 GHz
- Transition frequency $f_{\mathrm{T}}=25 \mathrm{GHz}$

- Gold metallization for high reliability
- SIEGET ® 25 GHz fT - Line

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP405	ALs	$1=B$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	SOT343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_{\mathrm{A}}>0^{\circ} \mathrm{C}$		4.5	
$T_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$		4.1	
Collector-emitter voltage	V_{CES}	15	
Collector-base voltage	V_{CBO}	15	
Emitter-base voltage	V_{EBO}	1.5	
Collector current	I_{C}	12	mA
Base current	I_{B}	1	
Total power dissipation 1$)$	$P_{\text {tot }}$	55	mW
$T_{\mathrm{S}} \leq 120^{\circ} \mathrm{C}$			
Junction temperature	T_{i}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	T_{A}	$-65 \ldots 150$	
Storage temperature	$T_{\text {stg }}$	$-65 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{2}$)	$R_{\text {thJS }}$	≤ 520	K/W

${ }^{1} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb
${ }^{2}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{C}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$	$V_{(\mathrm{BR}) \mathrm{CEO}}$	4.5	5	-	V
Collector-emitter cutoff current $V_{\mathrm{CE}}=15 \mathrm{~V}, V_{\mathrm{BE}}=0$	ICES	-	-	10	$\mu \mathrm{A}$
Collector-base cutoff current $V_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	$I_{\text {CBO }}$	-	-	100	nA
Emitter-base cutoff current $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$	IEBO	-	-	1	$\mu \mathrm{A}$
DC current gain $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}$, pulse measured	$h_{\text {FE }}$	60	95	130	-

Electrical Characteristics at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=2 \mathrm{GHz}$	$f_{\text {T }}$	18	25		GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ emitter grounded	$C_{\text {cb }}$	-	0.05	0.1	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{c e}$		0.24		
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0,$ collector grounded	$C_{\text {eb }}$	-	0.29		
Noise figure $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, t=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$	F	-	1.25	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	23	-	dB
Insertion power gain $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	14	18.5	-	
Third order intercept point at output ${ }^{2}$) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$I P_{3}$	-	15	-	dBm
1dB Compression point at output $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	5	-	

${ }^{1} G_{m s}=\left|S_{21} / S_{12}\right|$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

BFP405

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transitor Chip Data:

$\mathrm{IS}=$	0.21024	fA	$\mathrm{BF}=$	83.23	-	$\mathrm{NF}=$	1.0405	-
$\mathrm{VAF}=$	39.251	V	$\mathrm{IKF}=$	0.16493	A	$\mathrm{ISE}=$	15.761	fA
$\mathrm{NE}=$	1.7763	-	$\mathrm{BR}=$	10.526	-	$\mathrm{NR}=$	0.96647	-
$\mathrm{VAR}=$	34.368	V	$\mathrm{IKR}=$	0.25052	mA	$\mathrm{ISC}=$	0.037223	fA
$\mathrm{NC}=$	1.3152	-	$\mathrm{RB}=$	15	Ω	$\mathrm{IRB}=$	0.21215	mA
$\mathrm{RBM}=$	1.3491	Ω	$\mathrm{RE}=$	1.9289	-	$\mathrm{RC}=$	0.12691	Ω
$\mathrm{CJE}=$	3.7265	fF	$\mathrm{VJE}=$	0.70367	V	$\mathrm{MJE}=$	0.37747	-
$\mathrm{TF}=$	4.5899	ps	$\mathrm{XTF}=$	0.3641	-	$\mathrm{VTF}=$	0.19762	V
$\mathrm{ITF}=$	1.3364	A	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	96.941	fF
$\mathrm{VJC}=$	0.99532	V	$\mathrm{MJC}=$	0.48652	-	$\mathrm{XCJC}=$	0.08161	-
$\mathrm{TR}=$	1.4935	ns	$\mathrm{CJS}=$	0	fF	$\mathrm{VJS}=$	0.75	V
$\mathrm{MJS}=$	0	-	$\mathrm{XTB}=$	0	-	$\mathrm{EG}=$	1.11	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.99469		TNOM	300	K

C'-E'-dioden Data (Berkley-Spice 1G. 6 Syntax): IS = $2 \mathrm{fA} ; \mathrm{N}=1.02$-, RS = 20Ω All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit:

The SOT343 package has two emitter leads. To avoid high complexity to the package equivalent circuit both leads are combined in one electrical connection

Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a InfineonTechnologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes

For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G. 6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies $<100 \mathrm{MHz}$.

For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.
Note:

- This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.

Common Emitter S- and Noise-parameter

For detailed S- and Noise-parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies Application Notes
CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

BFP405

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\mathrm{cb}}=f\left(V_{\mathrm{CB}}\right)$ $f=1 \mathrm{MHz}$

Transition frequency $f_{\top}=f\left(I_{\mathrm{C}}\right)$
$f=2 \mathrm{GHz}$
$V_{C E}=$ parameter in V

Power gain $G_{m a}, G_{m s}=f\left(I_{C}\right)$
$V_{C E}=2 \mathrm{~V}$
$f=$ parameter in GHz

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}},\left|S_{21}\right|^{2}=f(f)$
$V_{C E}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$ $I_{C}=5 \mathrm{~mA}$
$f=$ parameter in GHz

Noise figure $F=f\left(I_{C}\right)$
$V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{\mathrm{CE}}=1 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$

Noise figure $F=f\left(I_{\mathrm{C}}\right)$
$V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}$
L

Source impedance for min. noise figure vs. frequency

$$
V_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} / 5 \mathrm{~mA}
$$

Package Outline

Foot Print

Marking Layout

Example

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

