HIGH POWER SILICON NPN TRANSISTOR

BUS14/BUS14A

- TO-3 Metal Package
- High Voltage, High Speed
- Intended for use in converters, inverters, switching regulators, Motor control systems, etc.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

		BUS14	BUS14A	
VCESM	Collector – Emitter Voltage $V_{BE} = 0$, peak value	850V	1000V	
V_{CEO}	Collector – Emitter Voltage	400V	450V	
IC	Collector Current (dc)	30.	A	
I_{CM}	Peak Collector Current t _p ≤2ms	50	A	
I_{B}	Base Current (dc)	64	4	
IBM	Peak Base Current t _p ≤2ms	10	A	
Ptot	Total Power Dissipation at T _{mb} = 25°C	250W		
TJ	Maximum Junction Temperature	200°C		
T_{stg}	Storage Temperature Range	-65 to +200°C		

THERMAL PROPERTIES

Symbols	Parameters	Min.	Тур.	Max.	Units		
R e J-mb	Thermal Resistance, Junction To mounting base			0.7	K/W		

Magnatec reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Magnatec is believed to be both accurate and reliable at the time of going to press. However Magnatec assumes no responsibility for any errors or omissions discovered in its use. Magnatec encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

Symbols	Parameters	Test Conditions		BUS14	BUS14A	Units	
V _{CESM}	Collector-Emitter voltage	$V_{BE} = 0$	Peak value	Max	850	1000	V
V_{CEO}	Collector-Emitter voltage	Open base		Max	400	450	V
ICES	Collector cut-off current	$V_{CE} = V_{CESMmax}$	$V_{BE} = 0$	<		1	
ICES	Collector cut-off current	$V_{CE} = V_{CESMmax}$	V _{BE} =0, T _J = 125°C	<	5		mΑ
I _{EBO}	Emitter cut-off current	I _C = 0	V _{EB} = 9V	<	10		
Ver()	Collector-Emitter Saturation	I _C = 20A	I _B = 4A	<	1.5	-	
VCE(sat)	Voltage	I _C = 16A	I _B = 3.2A	<	-	1.5	
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 20A	I _B = 4A	<	1.7	-	V
		I _C = 16A	I _B = 3.2A	<	-	1.7	
V _{CEOsust}	Collector-Emitter sustaining voltage	$I_C = 0$, $I_{Boff} = 0$,	L=25mH	>	400	450	

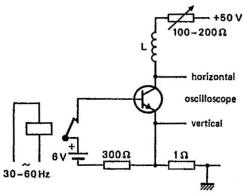
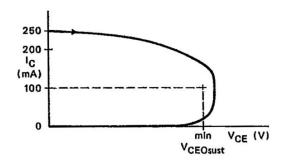
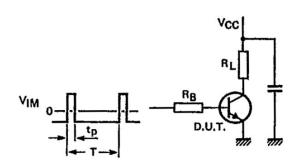
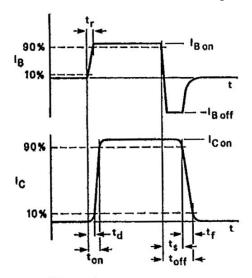


Fig 1. Test circuit for V_{CEOsust}




Fig 2. Oscilloscope display for sustaining voltage

DYNAMIC CHARACTERISTICS


Switching	times resistive load (I	Figs 3 and 4)			BUS14	BUS14A	Units
t _{on}	Turn-on time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	<	1	-	
t _S	Storage time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	<	4	-]
t _f	Fall time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	<	0.8	-	
t _{on}	Turn-on time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	1	μs
t _S	Storage time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	4	
t _f	Fall time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	0.8	
Switching	times inductive load	(Figs 5 and 6)					
t _S	Storage time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	typ	2.8	-	116
t _S	Storage time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	<	3.6	-	μs
t _f	Fall time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	typ	80	-	
t _f	Fall time	I _{Con} = 20A	$I_{Bon} = -I_{Boff} = 4A$	<	150	-	ns
t _S	Storage time	$I_{Con} = 20A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 4A$	typ	3.1	-	He
t _S	Storage time	$I_{Con} = 20A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 4A$	<	4.0	-	μs
t _f	Fall time	$I_{Con} = 20A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 4A$	typ	140	-	nc
t _f	Fall time	$I_{Con} = 20A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 4A$	<	300	-	ns
t _S	Storage time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	typ	-	2.8	116
t _S	Storage time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	3.6	μs
t _f	Fall time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	typ	-	80	nc
t _f	Fall time	I _{Con} = 16A	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	150	ns
t _S	Storage time	$I_{Con} = 16A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 3.2A$	typ	-	3.1	II.C
t _S	Storage time	$I_{Con} = 16A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	4.0	μs
t _f	Fall time	$I_{Con} = 16A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 3.2A$	typ	-	140	nc
t _f	Fall time	$I_{Con} = 16A; T_{J} = 100^{\circ}C$	$I_{Bon} = -I_{Boff} = 3.2A$	<	-	300	ns

$$V_{CC} = 250 \text{ V}$$
 $V_{IM} = -6 \text{ to } +8 \text{ V}$
 $t_p = 20 \mu \text{s}$
 $\frac{t_p}{T} = 0.01$

Fig 3. Test Circuit Resistive Load

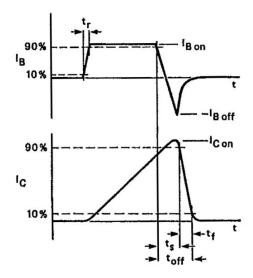


Fig 5. Switching Times Waveform Inductive Load

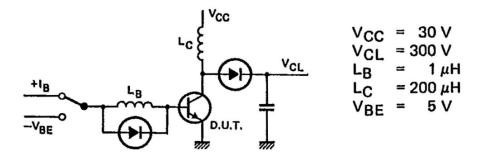


Fig 6. Test Circuit Resistive Load

TYPICAL CHARACTERISTICS

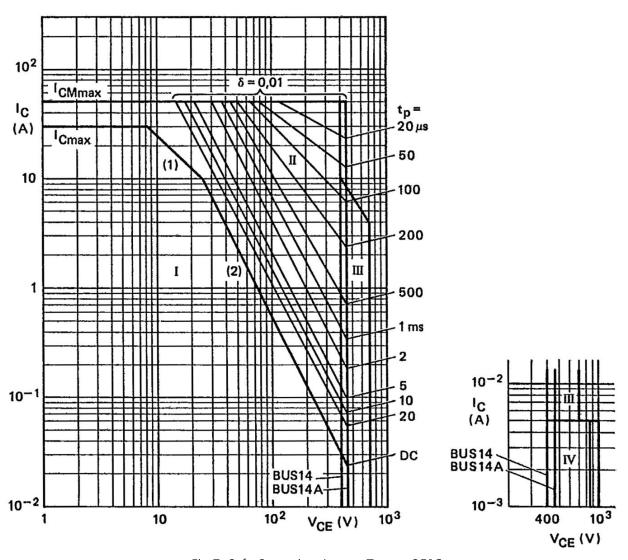


Fig 7. Safe Operating Area at $T_{mb} \le 25$ °C

- (1) $P_{tot(max)}$ and $P_{peak(max)}$ lines.
- (2)Second-breakdown limits (independent of temperature).
- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- Ш Area of permissible operation during turn-on in single transistor converters provided $R_{BF} \le 100\Omega$ and t_D≤0.6µs.
- IV Repetitive pulse operation in this region is permissible provided $V_{BE} \le 0$ and $t_D \le 2ms$.

Page 5 of 7

TYPICAL CHARACTERISTICS

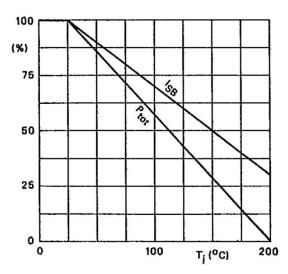


Fig 8. Total power dissipation and second-breakdown current derating curve.

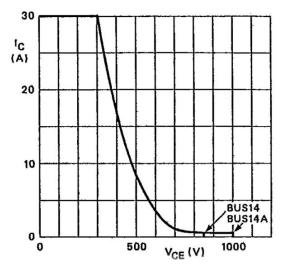
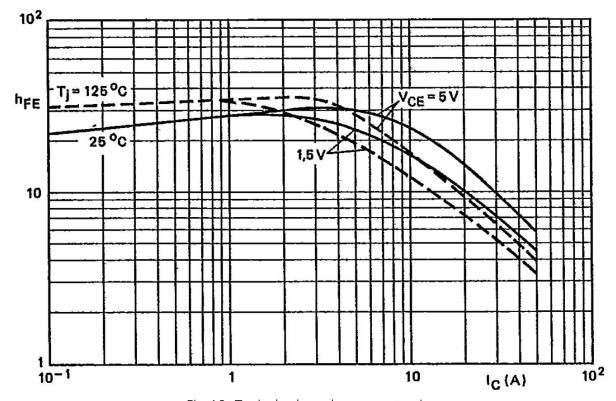
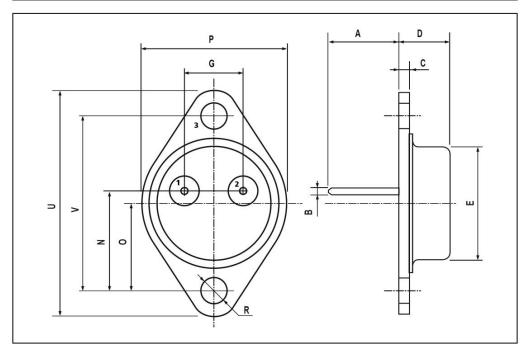


Fig. 9 Reverse Bias SOAR




Fig 10. Typical values d.c. current gain.

MECHANICAL DATA

Dimensions in mm

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		11.7			0.460	
В	0.96		1.10	0.037		0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.50			1.555
V		30.10			1.185	

TO-3

Pin 1 - Emitter

Pin 2 - Base

Case (3) - Collector