

BD950 BD952 BD954 BD956

MECHANICAL DATA Dimensions in mm

SILICON EPITAXIAL BASE PNP POWER TRANSISTORS

PNP Transistors in a plastic TO-220 package.

With their NPN complements BD949 ; 951 ; 953 and 955 they are intended for use in a wide range of power amplifiers and for switching applications.

TO-220AB TO220 Plastic Package

Pin 1 - Base Pin 2 - Collector Pin 3 - Emitter

Collector connected to Mounting Base.

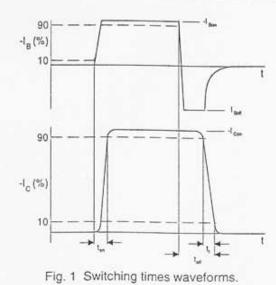
ABSOLUTE MAXIMUM RATINGS

$(T_{case} = 25)$	5°C unless otherwise stated)		BD950	BD952	BD954	BD956
V _{CBO}	Collector - Base Voltage		-60V	-80V	-100V	-120V
V _{CEO}	Collector – Emitter Voltage		-60V	-80V	-100V	-120V
V _{EBO}	Emitter – Base Voltage		-5V			
I _C	Collector Current		-5A			
ICM	Peak Collector Current		-8A			
P _{tot}	Total Power Dissipation	$T_{amb} \le 25^{\circ}C$	40W			
Tstg	Storage Temperature Range		-65 to 150°C			
TJ	Maximum Junction Temperature			15	0°C	

Downloaded from Elcodis.com electronic components distributor

BD950 BD952 BD954 BD956

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)


	Parameter	Te	est Conditions	Min.	Тур.	Max.	Unit
VBE-	Base – Emitter Voltage ¹	$I_{C} = -2A$ $V_{CE} = -4V$				1.4	V
V _{CE(sat)} .	Collector – Emitter Saturation Voltage	I _C = -2A	I _B = -0.2A			1	v
I _{СВО}	Collector Cut-off Current	I _E = 0	$V_{CB} = V_{CBO(MAX)}$			0.1	mA
		I _E = 0	$V_{CB} = \frac{1}{2}V_{CBO(MAX)}$ $T_J = 150^{\circ}C$			2	
		1 _B = 0	$V_{CE} = \frac{1}{2}V_{CEO(MAX)}$			0.5	
I _{EBO}	Emitter Cut-off Current	I _C = 0	$V_{EB} = -5V$			1	mA
h _{FE} .	DC Current Gain	I _C = -0.5A	$V_{CE} = -4V$	40			
		$I_{C} = -2A$	$V_{CE} = -4V$	20			-
f _T	Transition Frequency	$I_{C} = -0.5A$ f = 1MHz	$V_{CE} = -4V$	3			MHz
ton	Turn-on Time	I _{C(ON)} = 1A -I _{B(ON)} = I _{B(OFF)} = 0.1A			0.1		
tOFF	Turn-off Time				0.4		μs

* Pulse Test: $t_p \le 300 \mu s$, $\delta < 2\%$

Note 1 V_{EB} decreases by abount 2.3mV/K with increasing temperature.

THERMAL CHARACTERISTICS

R _{0J-MB}	Thermal Resistance Junction to Mounting Base	3.12	KW
R _{0JA}	Thermal Resistance Junction to Ambient	70	K/W

- 20 V Vcc = 3.5 V VBB = 82 Ω R1 R2 = 150 Ω 39 Ω R3 -T.U.T 20 Ω **R**4 ≤ 15 ns $t_r = t_i$ = 10 μs tp = 500 µs Т

Fig. 2 Switching times test circuit.

Semelab plc. Telephone (0455) 556565. Telex: 341927. Fax (0455) 552612. Downloaded from <u>Elcodis.com</u> electronic components distributor - 30 V

VIM