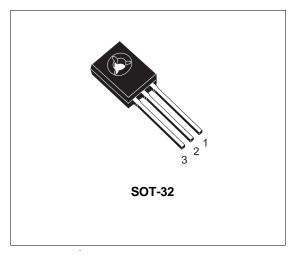
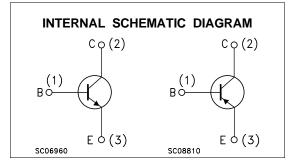


BD433/5/7 BD434/6/8

COMPLEMENTARY SILICON POWER TRANSISTORS


- STMicroelectronics PREFERRED SALESTYPE
- COMPLEMENTARY PNP NPN DEVICES


DESCRIPTION

The BD433, BD435, and BD437 are silicon epitaxial-base NPN power transistors in Jedec SOT-32 plastic package, intented for use in medium power linear and switching applications.

The BD433 is especially suitable for use in car-radio output stages.

The complementary PNP types are BD434, BD436, and BD438 respectively.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value				
		NPN	BD433	BD435	BD437	
		PNP	BD434	BD436	BD438	1
V _{CBO}	Collector-Base Voltage $(I_E = 0)$		22	32	45	V
VCES	Collector-Emitter Voltage (V _{BE} = 0)		22	32	45	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)		22	32	45	V
V_{EBO}	Emitter-Base Voltage $(I_C = 0)$			5		V
Ic	Collector Current			4		Α
Ісм	Collector Peak Current (t ≤ 10 ms)			7		А
Ι _Β	Base Current			1		Α
P _{tot}	Total Dissipation at $T_c \le 25 \ ^{\circ}C$			36		W
T _{stg}	Storage Temperature			-65 to 150		°C
Tj	Max. Operating Junction Temperature		150			°C

For PNP types voltage and current values are negative.

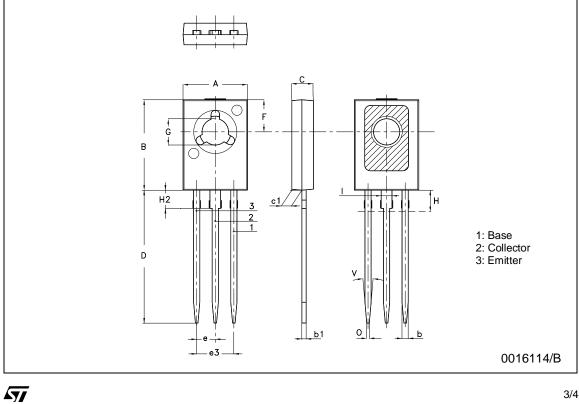
February 2003

BD433 BD434 BD435 BD436 BD437 BD438

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Мах	3.5	°C/W
Rthj-amb	Thermal Resistance Junction-ambient	Max	100	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)	for BD433/434 for BD435/436 for BD437/438	$V_{CB} = 32 V$			100 100 100	μΑ μΑ μΑ
ICES	Collector Cut-off Current (V _{BE} = 0)	for BD433/434 for BD435/436 for BD437/438	$V_{CE} = 32 V$			100 100 100	μΑ μΑ μΑ
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 5 V				1	mA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	Ic = 100 mA	for BD433/434 for BD435/436 for BD437/438	22 32 45			V V V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 2 A	l _B = 0.2 A for BD433/434 for BD435/436 for BD437/438		0.2 0.2 0.2	0.5 0.5 0.6	V V V
V _{BE} *	Base-Emitter Voltage	I _C = 10 mA I _C = 2 A	V _{CE} = 5 V V _{CE} = 1 V for BD433/434 for BD435/436 for BD437/438		0.58	1.1 1.1 1.2	V V V V
hfe*	DC Current Gain	Ic = 10 mA Ic = 500 mA Ic = 2 A	$V_{CE} = 5 V$ for BD433/434 for BD435/436 for BD437/438 $V_{CE} = 1 V$ $V_{CE} = 1 V$ for BD433/434 for BD435/436 for BD437/438	40 40 30 85 50 50 40	130 130 130 140		
h _{FE1} /h _{FE2} *	Matched Pair	I _C = 500 mA	$V_{CE} = 1 V$			1.4	
f⊤	Transition frequency	I _C = 250 mA	$V_{CE} = 1 V$	3			MHz

* Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %

2/4

	mm			inch			
MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
7.4		7.8	0.291		0.307		
10.5		10.8	0.413		0.425		
0.7		0.9	0.028		0.035		
0.40		0.65	0.015		0.025		
2.4		2.7	0.094		0.106		
1.0		1.3	0.039		0.051		
15.4		16.0	0.606		0.630		
	2.2			0.087			
	4.4			0.173			
	3.8			0.150			
3		3.2	0.118		0.126		
		2.54			0.100		
	2.15			0.084			
	1.27			0.05			
	0.3			0.011			
	7.4 10.5 0.7 0.40 2.4 1.0 15.4	7.4 10.5 0.7 0.40 2.4 1.0 15.4 2.2 4.4 3.8 3 2.15 1.27	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.4 7.8 0.291 10.5 10.8 0.413 0.7 0.9 0.028 0.40 0.65 0.015 2.4 2.7 0.094 1.0 1.3 0.039 15.4 16.0 0.606 2.2 0.087 4.4 0.173 3.8 0.150 3 3.2 0.118 2.15 0.084 1.27 0.05		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4/4

57