


HIGH SPEED, MEDIUM POWER, NPN **SWITCHING TRANSISTOR IN A** HERMETICALLY SEALED **CERAMIC SURFACE MOUNT PACKAGE** FOR HIGH RELIABILITY APPLICATIONS

MECHANICAL DATA Dimensions in mm (inches)

FEATURES

- SILICON PLANAR EPITAXIAL NPN **TRANSISTOR**
- HERMETIC CERAMIC SURFACE MOUNT PACKAGE (SOT23 COMPATIBLE)
- CECC SCREENING OPTIONS

SOT23 CERAMIC (LCC1 PACKAGE)

Underside View

PAD 1 - Base PAD 2 - Emitter PAD 3 - Collector

APPLICATIONS:

Hermetically sealed surface mount version of the popular 2N2369A for high reliability / space applications requiring small size and low weight devices.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

V_{CBO}	Collector – Base Voltage		40V		
V_{CEO}	Collector – Emitter Voltage		15V		
V_{EBO}	Emitter – Base Voltage		4.5V		
$I_{\mathbb{C}}$	Collector Current		200mA		
P_{D}	Total Device Dissipation	@ T _A =25°C	360mW		
		Derate above 25°C	2.06mW / °C		
P_{D}	Total Device Dissipation	@ T _C =25°C	680mW		
		Derate above 25°C	6.85mW / °C		
T_{STG} , T_{J}	Operating and Storage Temperature Range		−65 to +200°C		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CEO*}	Collector – Emitter Breakdown Voltage	I _C = 10mA	I _B =0	15			V
V _{(BR)CBO}	Collector – Base Breakdown Voltage	$I_C = 10\mu A$	I _E =0	40			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _E = 10μA	I _C =0	4.5			V
I _{CES}	Collector – Emitter Cut-off Current	V _{CE} = 20V	$V_{BE} = 0$			0.40	
I _{CBO}	Collector – Base Cut-off Current	$V_{CB} = 20V$	$T_A = +150^{\circ}C$			30	μΑ
V _{CE(sat)*}	Collector – Emitter Saturation Voltage	I _C = 10mA	I _B = 1mA			0.20	V
			$T_A = +125$ °C			0.30	
		$I_C = 30mA$	$I_B = 3mA$			0.25	
		I _C = 100mA	I _B = 10mA			0.50	
V _{BE(sat)*}	Base – Emitter Saturation Voltage	I _C = 10mA	T _A = +25°C	0.70		0.85	V
		I _B = 1mA	$T_A = +125$ °C	0.59			
			$T_A = -55$ °C			1.02	
		$I_C = 30mA$	$I_B = 3mA$			1.15	
		I _C = 100mA	I _B = 10mA			1.60	
h _{FE*}	Current Gain	I _C = 10mA	$V_{CE} = 0.35V$	40			
			$T_A = -55$ °C	20			
		$I_C = 30 \text{mA}$	$V_{CE} = 0.4V$	30			
		$I_C = 10mA$	V _{CE} = 1.0V			120	
		I _C = 100mA	V _{CE} = 1V	20			
fT	Transition Frequency	$I_C = 10mA$	$V_{CE} = 10V$	500		N	N/ILI-
		f = 100MHz					MHz
C _{ob}	Output Capacitance	$V_{CB} = 5V$	I _E = 0			4	pF
		f = 140kHz					
t _s	Storage Time	$I_C = 10mA$ $I_{B1} = I_{B2} = 10mA$				13	
	Storage Time						ns
t _{on}	Turn-On Time	$I_C = 10mA$	$V_{CC} = 3V$			12	110
t _{off}	Turn-Off Time	$I_{B1} = 3mA$	$I_{B2} = 1.5 \text{mA}$			18	

^{*} Pulse Test: $t_p \le 300 \mu s$, $\delta \le 2\%$.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 4141

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1