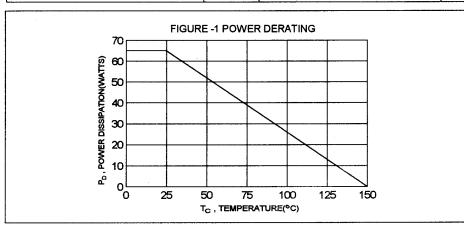


COMPLEMENTARY SILICON PLASTIC POWER TRANSISTORS

... designed for use in general purpose power amplifier and switching applications.

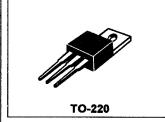
FEATURES:

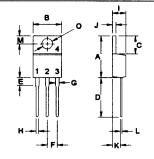
* Collector-Emitter Sustaining Voltage - V_{CEO(sus)}= 40V(Min)- TIP41,TIP42 60V(Min)- TIP41A, TIP42A 80V(Min)- TIP41B, TIP42B 100V(Min)-TIP41C,TIP42C


* Collector-Emitter Saturation Voltage- $V_{CE(sat)}$ =1.5V(Max)@ I_{C} = 6.0A * Current Gain-Bandwidth Product f_{T} =3.0 MHz (Min)@ I_{C} =500mA

MAXIMUM RATINGS

Characteristic	Symbol	TIP41 TIP42	TIP41A TIP42A	TIP41B TIP42B	TIP41C TIP42C	Unit
Collector-Emitter Voltage	V _{CEO}	40	60	80	100	V
Collector-Base Voltage	V _{CBO}	40	60	80	100	٧
Emitter-Base Voltage	V _{EBO}	5				٧
Collector Current - Continuous - Peak	l _c	6 10			Α	
Base Current	l _B	2			Α	
Total Power Dissipation@T _C = 25°C Derate above 25°C	P _D	65 0.52			W/°C	
Operating and Storage Junction Temperature Range	T _J ,T _{STG}	-65 to +150			°C	


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rθjc	1.92	°C/W

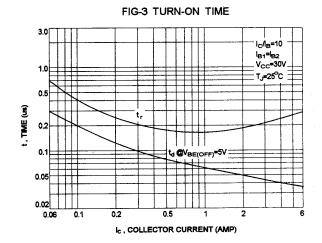
NPN	PNP
TIP41	TIP42
TIP41A	TIP42A
TIP41B	TIP42B
TIP41C	TIP42C

6 AMPERE **COMPLEMENTARY SILICON POWER TRANSISTORS** 40 -100 VOLTS 65 WATTS

PIN 1.BASE 2.COLLECTOR
3.EMITTER
4.COLLECTOR(CASE)


15134	MILLIMETERS			
·DIM	MIN	MAX		
Α	14.68	15.31		
В	9.78	10.42		
С	5.01	6.52		
D	13.06	14.62		
E	3.57	4.07		
F	2.42	3.66		
G	1.12	1.36		
H	0.72	0.96		
1	4.22	4.98		
J	1.14	1.38		
K	2.20	2.97		
L	0.33	0.55		
М	2.48	2.98		
0	3.70	3.90		

FLECTRICAL CHARACTERISTICS	($T_c = 25^{\circ}C$ unless otherwise noted)
FFFO I MOVE GUVINA I FIND HOD	(in Zo o allicos other moo notos)


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage(1) (I _C = 30 mA, I _B = 0)	TIP41,TIP42 TIP41A,TIP42A TIP41B,TIP42B TIP41C,TIP42C	V _{CEO(sus)}	40 60 80 100		V
Collector Cutoff Current (V _{CE} = 30 V, I _B = 0) TiP41,TiP42,T!P41A,TiP42A (V _{CE} = 60 V, I _B = 0) TiP41B,TiP42B,TiP41C,TiP42C		l _{CEO}		0.7 0.7	. mA
Collector Cutoff Current (V _{CE} = 40 V, V _{EE} = 0) (V _{CE} = 60 V, V _{EE} = 0) (V _{CE} = 80 V, V _{EE} = 0) (V _{CE} = 100 V, V _{EE} = 0)	TIP41,TIP42 TIP41A,TIP42A TIP41B,TIP42B TIP41C,TIP42C	l _{CES}		0.4 0.4 0.4 0.4	mA
Emitter Cutoff Current (V _{EB} = 5.0 V, I _C = 0)		I _{EBO}		1.0	mA
ON CHARACTERISTICS (1)					
DC Current Gain (I _C =0.3 A, V _{CE} = 4.0 V,) (I _C = 3.0 A, V _{CE} = 4.0 V,)		hFE	30 15	75	
Collector-Emitter Saturation Voltage (I _C = 6.0 A, I _B =600 mA)		V _{CE(sat)}		1.5	V
Base-Emitter On Voltage (I _C =6.0 A,V _{CE} = 4.0 V)		V _{BE(On)}		2.0	V
DYNAMIC CHARACTERISTICS					
Current Gain - Bandwidth Product (2) (I _C = 500 mA , V _{CE} = 10 V , f _{TEST} = 1 M	Hz)	f _T	3.0		MHz
Small Signal Current Gain (l _C = 500 mA , V _{CE} = 10 V , f = 1 kHz)		h _{fe}	20		-

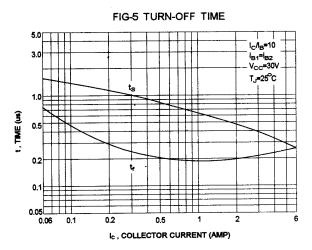
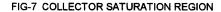
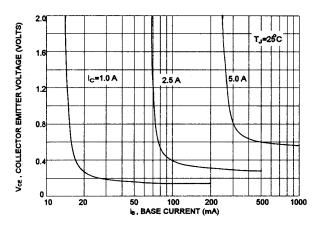

⁽¹⁾ Pulse Test: Pulse width $\le 300~\mu s$, Duty Cycle $\le 2.0~\%$ (2) f_T = $|\,h_{fe}\,|^\circ$ f_{TEST}

FIGURE 2 — SWITCHING TIME TEST CIRCUIT VCC +30 V 1, 1/2 ≤ 10 ns DUTY CYCLE = 1.0% Rg and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS D1 MUST BE FAST RECOVERY TYPE. sq: M8D5300 USED ABOVE Ig = 100 mA MSD6100 USED BELOW Ig = 100 mA





There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $I_{\text{C}^{-}}V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of FIG-6 curve is base on $T_{\text{J/PK}}=150\,^{\circ}\text{C}$; T_{C} is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% provided $T_{\text{J/PK}} \leq 150\,^{\circ}\text{C}$, At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

FIG-8 CAPACITANCES

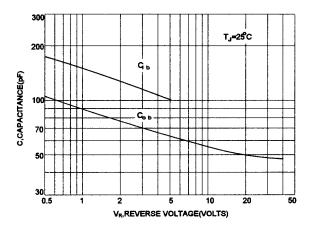


FIG-9 "ON" VOLTAGE

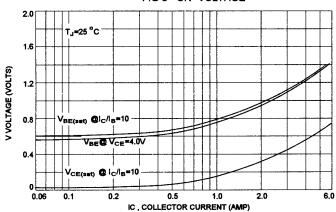
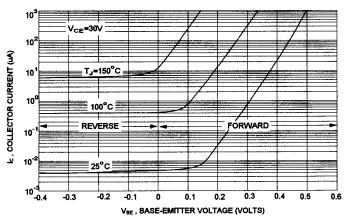



FIG-10 COLLECTOR CUT-OFF REGION

