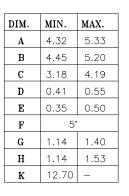
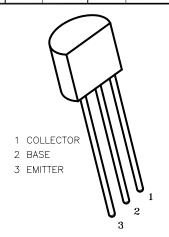


REVISIONS			DOC. NO. SPC-F004 * Effective: 7/8/02 * DCP No: 1398					
DCP #	REV	DESCRIPTION	DRAWN	DATE	CHECKD	DATE	APPRVD	DATE
1262	Α	RELEASED	НО	12/27/02	LS	12/27/02	DJC	12/27/02
1885	В	UPDATED TO ROHS COMPLIANT	EO	02/04/06	НО	2/6/06	НО	2/6/06

Absolute Maximum Ratings:

- Collector-Base Voltage, $\bar{V}_{CBO} = 180V$
- Collector-Emitter Voltage, V_{CEO} = 160V
- Emitter-Base Voltage, $V_{EBO} = 6V$
- Continuous Collector Current, $I_C=600 \text{mA}$ Total Device Dissipation ($T_A=+25^{\circ}\text{C}$), $P_D=625 \text{mW}$


Derate above $25^{\circ}C = 5 \text{mW/}^{\circ}C$


- Total Device Dissipation (T_C = +25°C), P_D = 1.5W Derate above 25°C = 12mW/°C

- Operating Junction Temperature Range, $T_J = -55^{\circ}\text{C} \sim +150^{\circ}\text{C}$ Storage Temperature Range, $T_{stg} = -55^{\circ}\text{C} \sim +150^{\circ}\text{C}$ Thermal Resistance, Junction to Case, $R_{thJC} = 83.3^{\circ}\text{C/W}$

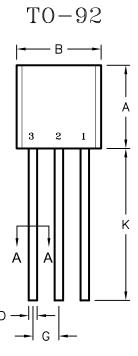
- Thermal Resistance, Junction to Ambient (Note 1), $R_{thJA} = 200^{\circ}C/W$

Electrical Characteristics: $(T_A = +25^{\circ}C)$ unless otherwisze specified)

Parameter	Symbol	Test Conditions	Min	Max	Unit		
OFF Characteristics							
Collector—Base Breakdown Voltage	V _{(BR)CB0}	$I_{\mathbf{C}} = 100 \mu A, \ I_{\mathbf{E}} = 0$	180	_	V		
0 II I E III B II VIII	17	T 40 A T 0 N L 0	4.00				

RoHS

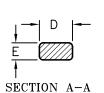
Compliant

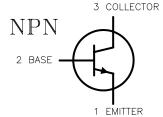

Collector—Base Breakdown Voltage	V(BR)CBO	$I_{\mathbf{C}} = 100\mu A, I_{\mathbf{E}} = 0$	100	_	ľ
Collector—Emitter Breakdown Voltage	V _{(BR)CEO}	I_C = 1.0mA, I_B = 0, Note 2	160	_	V
Emitter—Base Breakdown Voltage	V _{(BR)EBO}	$I_{\rm E}$ = 10 μ A, $I_{\rm C}$ = 0	6	_	٧
Collector Cut-Off Current	I _{CBO}	$V_{CB} = 120V, I_{E} = 0$	_	50	nA
		$V_{CB} = 120V, I_{E} = 0, T_{A} = +100^{\circ}C$	_	50	uA
Emitter Cut-Off Current	I _{EBO}	$V_{EB} = 4V, I_{C} = 0$	-	50	nA

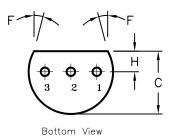
ON Characteristics (Note 2)

DC Current Gain	h _{FE}	$V_{CE} = 5V$, $I_{C} = 1.0$ mA	80	-	-
		$V_{CE} = 5V$, $I_{C} = 10$ mA	80	250	-
		$V_{CE} = 5V$, $I_{C} = 50$ mA	30	-	-
Collector—Emitter Saturation Voltage	V _{CE(sat)}	$I_{\rm C}$ = 10mA, $I_{\rm B}$ = 1.0mA	_	0.15	V
		$I_{\rm C}=$ 50mA, $I_{\rm B}=$ 5.0mA	_	0.2	٧
Base—Emitter Saturation Voltage	V BE(sat)	$I_{\rm C}$ = 10mA, $I_{\rm B}$ = 1.0mA	_	1	٧
		$I_C = 50$ mA, $I_B = 5.0$ mA	_	1	V

Small-Signal Characteristics


Current Gain-Bandwidth Product	f _T	V_{CE} = 10V, I_{C} = 10mA, f = 100MHz	100	300	MHz
Output Capacitance	C _{obo}	$V_{CB} = 10V$, $I_{E} = 0$, $f = 1MHz$	_	6	рF
Input Capacitance	C _{ibo}	$V_{BE} = 0.5V$, $I_{C} = 0$, $f = 1MHz$	_	20	рF
Small—Signal Current Gain	h _{fe}	V_{CE} = 10V, I_{C} = 1mA, f = 1kHz	50	200	_
Noise Figure	NF	$V_{CE} = 5V$, $I_C = 250\mu$ A, $f = 1$ kHz $R_S = 1$ kOhm	-	8	dB




Notes:

1- R_{thJA} is measured with the device soldered into a typical printed circuit board.

2- Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.

SPC-F004.DWG

TOLERANCES:	DRAWN BY:	DATE:		
UNLESS OTHERWISE	HISHAM ODISH	12/27/02		
SPECIFIED,	CHECKED BY:	DATE:		
DIMENSIONS ARE	LUIS SERBIA	12/27/02		
FOR REFERENCE PURPOSES ONLY.	APPROVED BY:	DATE:		
	DANIEL CAREY	12/27/02		

DRAWING TITLE: TRANSISTOR, BIPOLAR, TO-92, NPN

SIZE DWG. NO. 2N5551 SCALE: NTS

U.O.M.: MILLIMETERS

ELECTRONIC FILE 35C0727.DWG

SHEET:

REV

В

ALL RIGHTS RESERVED. NO PORTION OF THIS PUBLICATION, WHETHER IN WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC TECHNOLOGY. DISCLAIMER: ALL STATEMENTS AND TECHNICAL INFORMATION CONTAINED HEREIN ARE BASED UPON INFORMATION AND/OR TESTS WE BELIEVE TO BE ACCURATE AND RELIABLE. SINCE CONDITIONS OF USE ARE BEYOND OUR CONTROL, THE USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT FOR THE INTENDED USE AND ASSUME ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION THEREWITH.