

PNP General Purpose Amplifier

This device is designed for general purpose amplifier and switching applications at collector currents of 10 μ A to 100 mA.

Absolute Maximum Ratings* $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics

Symbol	Characteristic	Мах		Units	
		2N3906	*MMBT3906	**PZT3906	
PD	Total Device Dissipation	625	350	1,000	mW
	Derate above 25°C	5.0	2.8	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

T_A = 25°C unless otherwise noted

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

** Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

© 2001 Fairchild Semiconductor Corporation

2N3906/MMBT3906/PZT3906, Rev A

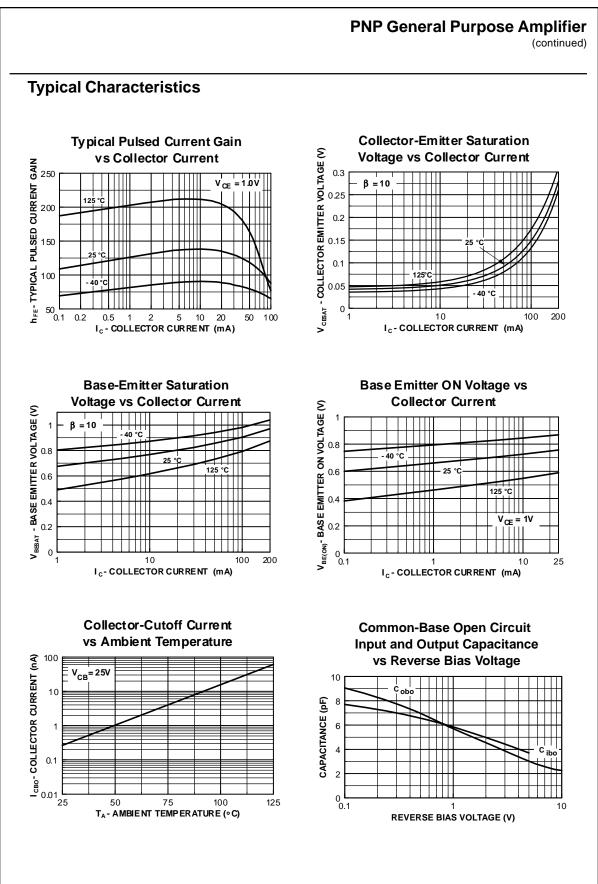
PNP General Purpose Amplifier (co

on	tinu	led)

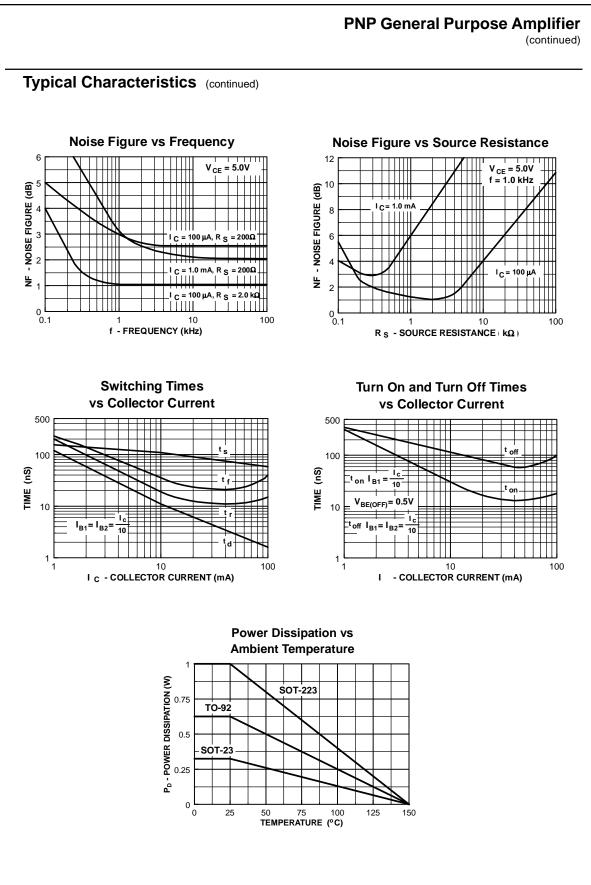
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	5.0		V
BL	Base Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{BE} = 3.0 \text{ V}$		50	nA
CEX	Collector Cutoff Current	V _{CE} = 30 V, V _{BE} = 3.0 V		50	nA
ON CHAR	ACTERISTICS				
	ACTERISTICS DC Current Gain *	I _C = 0.1 mA, V _{CE} = 1.0 V	60		
		$I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80 100	300	
		$ I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} $	80 100 60	300	
h _{FE}	DC Current Gain *	$ I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} $	80 100		
η _{FE}		$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \end{array} $	80 100 60	0.25	V
N _{FE}	DC Current Gain * Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array} $	80 100 60 30	0.25 0.4	V
h _{FE}	DC Current Gain *	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \end{array} $	80 100 60	0.25	-
h _{FE}	DC Current Gain * Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array} $	80 100 60 30	0.25 0.4	V
h _{FE} V _{CE(sat)} V _{BE(sat)}	DC Current Gain * Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \end{array} $	80 100 60 30	0.25 0.4 0.85	V V
h _{FE} V _{CE(sat)} V _{BE(sat)}	DC Current Gain * Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \end{array} $	80 100 60 30	0.25 0.4 0.85	V V

f _T	Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	250		MHz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 100 kHz		4.5	pF
Cibo	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_C = 0,$ f = 100 kHz		10.0	pF
NF	Noise Figure	I_{C} = 100 μA, V _{CE} = 5.0 V, R _S =1.0kΩ,f=10 Hz to 15.7 kHz		4.0	dB

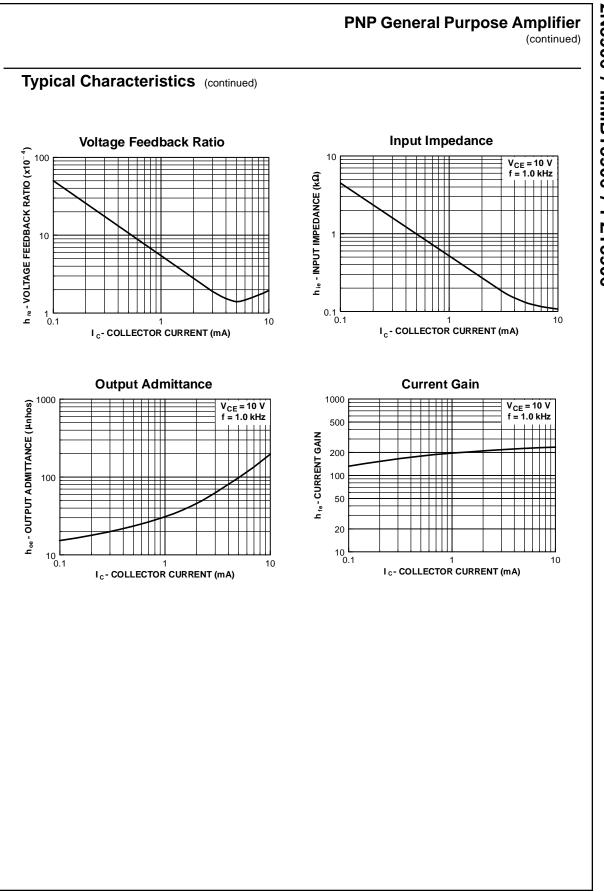
SWITCHING CHARACTERISTICS


t _d	Delay Time	$V_{CC} = 3.0 \text{ V}, V_{BE} = 0.5 \text{ V},$	35	ns
tr	Rise Time	$I_{\rm C} = 10$ mA, $I_{\rm B1} = 1.0$ mA	35	ns
ts	Storage Time	$V_{CC} = 3.0 \text{ V}, \text{ I}_{C} = 10 \text{mA}$	225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	75	ns

*Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%


NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

Spice Model


PNP (Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5 Br=4.977 Nc=2 Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5 Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p Itf=.4 Vtf=4 Xtf=6 Rb=10)

2N3906 / MMBT3906 / PZT3906

2N3906 / MMBT3906 / PZT3906

2N3906 / MMBT3906 / PZT3906

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ® FASTr[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production