

REVISIONS		DOC. NO. SPC-F004 * Effective: 7/8/02 * DCP No: 1398						
DCP #	REV	REV DESCRIPTION		DATE	CHECKD	DATE	APPRVD	DATE
1262	Α	RELEASED	НО	12/2/02	JWM	12/2/02	DJC	12/2/02
	В	UPDATED TO ROHS COMPLIANCE	EO	02/03/06	но	2/6/06	НО	2/6/06

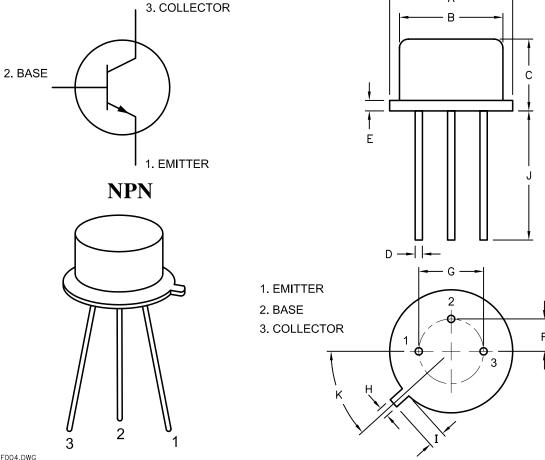
Description:

The $2N^{2}222A$ is a widely used "Industry Standard" silicon NPN transistor in a TO-18 type case designed for applications such as medium-speed switching and amplifiers from audio to VHF

Features:

- Low Collector Saturation Voltage: 1V (Max)
- High Current Gain-Bandwidth Product: $f_T = 300MHz$ (Min) @ $I_C = 20mA$

Absolute Maximum Ratings:


- Collector—Base Voltage, V_{CBO} = 75V
 Collector—Emitter Voltage, V_{CEO} = 40V
 Emitter—Base Voltage, V_{EBO} = 6V
 Continuous Collector Current, I_C = 800mA
- Total Device Dissipation ($T_A = +25^{\circ}C$), $P_D = 400$ mA

Derate above $25^{\circ}C = >2.28 \text{mW/}^{\circ}C$

Total Device Dissipation ($T_C = +25^{\circ}C$), $P_D = 1.2W$

Derate above $25^{\circ}C = 6.85 \text{mW/}^{\circ}C$

- Operating Junction Temperature Range, $T_J = -65^{\circ}\text{C} \sim +200^{\circ}\text{C}$ Storage Temperature Range, $T_{\text{stg}} = -65^{\circ}\text{C} \sim +200^{\circ}\text{C}$

Dim.	Min.	Max.	
Α	5.24	5.84	
В	4.52	4.97	
С	4.31	5.33	
D	0.40	0.53	
Е	-	0.76	
F	-	1.27	
G	-	2.97	
Н	0.91	1.17	
I	0.71	1.21	
J	12.70	-	
K	45°		

SPC-F004.DWG

TOLERANCES: UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE FOR REFERENCE PURPOSES ONLY.

DRAWN BY:	DATE:
HISHAM ODISH	12/2/02
CHECKED BY:	DATE:
JEFF MCVICKER	12/2/02
APPROVED BY:	DATE:
DANIEL CAREY	12/2/02

DRAWING TITLE:

Transistor, Silicon, TO-18, NPN, Planar Switching

ELECTRONIC FILE SIZE DWG. NO. REV 2N2222A 35C0690.DWG В SCALE: NTS U.O.M.: Millimeters SHEET:

ALL RIGHTS RESERVED. NO PORTION OF THIS PUBLICATION, WHETHER IN WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC TECHNOLOGY. DISCLAIMER: ALL STATEMENTS AND TECHNICAL INFORMATION CONTAINED HEREIN ARE BASED UPON INFORMATION AND/OR TESTS WE BELIEVE TO BE ACCURATE AND RELIABLE. SINCE CONDITIONS OF USE ARE BEYOND OUR CONTROL, THE USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT FOR THE INTENDED USE AND ASSUME ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION THEREWITH.

Electrical Characteristics: $(T_A = +25^{\circ}C)$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF Characteristics						•
Collector—Emitter Breakdown Voltage	V _{(BR)CE0}	$I_{C} = 10 \text{mA}, I_{B} = 0$	40	-	_	V
Collector—Base Breakdown Voltage	V _{(BR)CBO}	$I_{C} = 10 \muA, I_{E} = 0$	75	-	_	V
Emitter—Base Breakdown Voltage	V _{(BR)EBO}	$I_{C} = 10 \mu A, I_{C} = 0$	6	-	_	V
Collector Cut-Off Current	I _{CEX}	$V_{CE} = 60V$, $V_{EB(off)} = 3V$	-	-	10	nA
	I _{CBO}	$V_{CB} = 60V, I_{E} = 0$	_	-	0.01	μA
		$V_{CB} = 60V, I_{E} = 0, T_{A} = +150^{\circ}C$	_	_	10	μA
Emitter Cut-Off Current	I _{EBO}	$V_{EB} = 3V$, $I_{C} = 0$	-	-	10	nA
Base Cut-Off Current	I _{BL}	$V_{CE} = 60V$, $V_{EB(off)} = 3V$	-	-	20	nA
ON Characteristics						
DC Current Gain	h _{FE}	$V_{CE} = 10V, I_{C} = 0.1 mA$	35	_	_	_
		$V_{CE} = 10V$, $I_{C} = 1mA$	50	-	_	_
		$V_{CE} = 10V$, $I_{C} = 10mA$	75	_	_	_
		$V_{CE} = 10V, I_{C} = 10mA, T_{A} = -55^{\circ}C$	35	_	_	_
		$V_{CE} = 10V, I_{C} = 150mA$	100	-	300	_
		$V_{CE} = 10V, I_{C} = 500mA$	40	-	_	_
		$V_{CE} = 1V, I_{C} = 150mA$	50	-	_	_
Collector—Emitter Saturation Voltage (Note 1)	V _{CE(sat)}	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	_	_	0.3	V
	(,	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	_	_	1	V
Base—Emitter Saturation Voltage (Note 1)	V _{BE(sat)}	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	0.6	-	1.2	V
	()	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	_	_	2	V
Small-Signal Characteristics						
Current Gain—Bandwidth Product (Note 2)	f _T	$V_{CE} = 20V, I_{C} = 20mA, f = 100MHz,$	300	_	_	MHz
Output Capacitance	C _{obo}	$V_{CB} = 10V$, $I_E = 0$, $f = 1MHz$	_	_	8	рF
Input Capacitance	C _{ibo}	$V_{BE} = 500 \text{mV}, I_{C} = 0, f = 100 \text{kHz}$	_	-	25	рF
Input Impedance	h _{ie}	$V_{CE} = 10V$, $I_{C} = 1$ mA, $f = 1$ kHz	2	_	8	kOhm
		$V_{CE} = 10V$, $I_{C} = 10$ mA, $f = 1$ kHz	0.25	_	1.25	kOhm
Voltage Feedback Ratio	hre	$V_{CE} = 10V$, $I_{C} = 1$ mA, $f = 1$ kHz	-	-	8	$x 10^{-4}$
		$V_{CE} = 10V$, $I_{C} = 10$ mA, $f = 1$ kHz	-	_	4	$x 10^{-4}$
Small—Signal Current Gain	h _{fe}	$V_{CE} = 10V$, $I_{C} = 1$ mA, $f = 1$ kHz	50	_	300	_
		$V_{CE} = 10V$, $I_{C} = 10$ mA, $f = 1$ kHz	75	_	375	-
Output Admittance	hoe	$V_{CE} = 10V$, $I_{C} = 1$ mA, $f = 1$ kHz	5	-	35	µmhos
		$V_{CE} = 10V$, $I_{C} = 10$ mA, $f = 1$ kHz	25	-	200	µmhos
Collector—Base Time Constant	rb'Cc	$V_{CB} = 20V$, $I_{E} = 20$ mA, $f = 31.8$ MHz	_	-	150	ps
Noise Figure	N _F	$V_{CE} = 10V$, $I_{C} = 100 \mu A$, $f = 1 kHz$, $R_{S} = 1 KOhm$	-	-	4	dB
Real Part of Common—Emitter High Frequency Input Impedance	Re(h _{ie})	$V_{CE} = 20V$, $I_{C} = 20$ mA, $f = 300$ MHz	_	-	60	Ohm
Switching Characteristics						
Delay Time	t _d	707 1 150 - 4 150 - 4 15 15 15	_	-	10	ns
Rise Time	tr	$V_{CC} = 30V$, $I_{C} = 150$ mA, $V_{BE(off)} = 0.5V$, $I_{B1} = 15$ mA	_	-	25	ns
Storage Time	ts	$V_{CC} = 30V$, $I_{C} = 150$ mA, $I_{B1} = I_{B2} = 15$ mA	-	-	225	ns
Fall Time	t _f	1 VCC - 30 V, IC - 13011M, IB1 - IB2 - 1311M	_	-	60	ns

Note 1. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%. Note 2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

ALL RICHTS RESERVED NO PORTION OF THIS PUBLICATION WHETHER		DWG. NO.		I FLEC	TRONIC FILE	REV
ALL RIGHTS RESERVED. NO PORTION OF THIS PUBLICATION, WHETHER IN WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC TECHNOLOGY.		_	N2222A	35	В	
SPC-F004.DWG						
DOC. NO. SPC-F004 * Effective: 7/8/02 * DCP No: 1398	SCAL	E: NTS	U.O.M.: Millimeters		SHEET: 2 OF	F 2