SKT 240

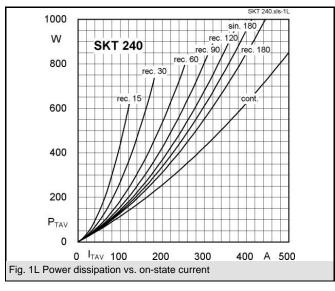
Capsule Thyristor

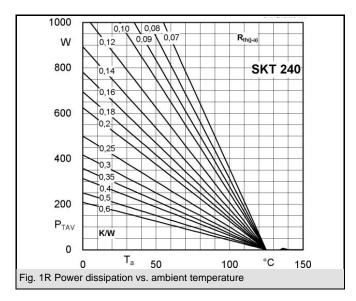
Line Thyristor

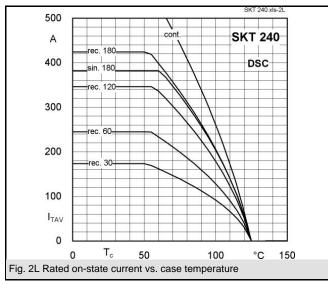
SKT 240

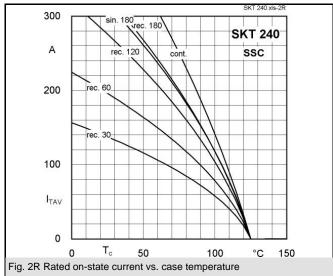
Features

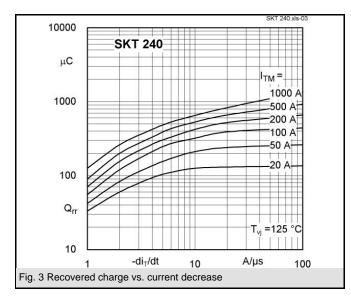
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- · International standard case
- Off-state and reverse voltages up to1800 V

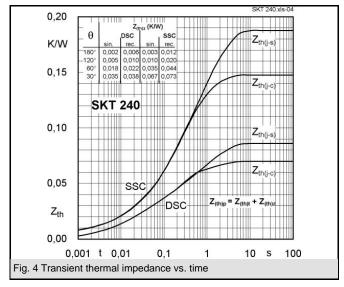

Typical Applications*

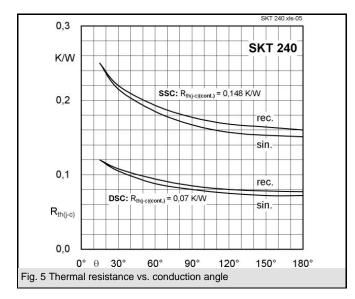

- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/32$ W, C = 0,47 μF

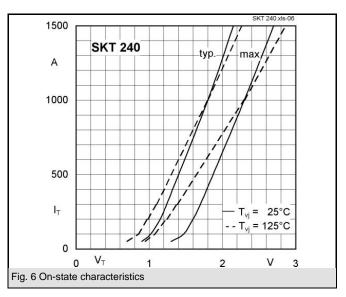

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 600 A (maximum value for continuous operation)		
V	V	I _{TAV} = 240 A (sin. 180; DSC; T _c = 93 °C)		
500	400	SKT 240/04E		
900	800	SKT 240/08E		
1300	1200	SKT 240/12E		
1500	1400	SKT 240/14E		
1700	1600	SKT 240/16E		
1900	1800	SKT 240/18E		

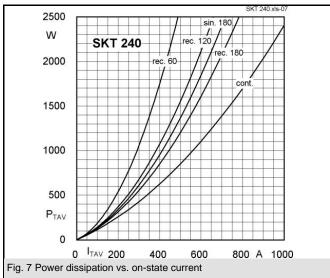

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	204 (282)	Α
I_D	2 x P8/180; T _a = 45 °C; B2 / B6	275 / 390	Α
	2 x P8/180F; T _a = 35 °C; B2 / B6	540 /750	Α
I_{RMS}	2 x P8/180; T _a = 45 °C; W1C	300	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	5000	Α
	$T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$	4500	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	125000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	101000	A²s
V _T	T _{vi} = 25 °C; I _T = 1000 A	max. 2,3	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1	V
r _T	T _{vj} = 125 °C	max. 1,4	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 40	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t_{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}$	50 150	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 400	mA
I_{L}	T_{vj} = 25 °C; typ. / max.	300 / 1000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,07	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,072 / 0,151	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,08 / 0,168	K/W
$R_{th(c-s)}$	DSC / SSC	0,02 / 0,04	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	4 5	kN
а			m/s²
m	approx.	55	g
Case		B 8	

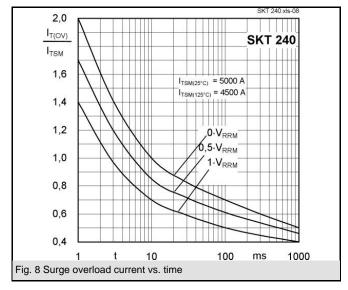


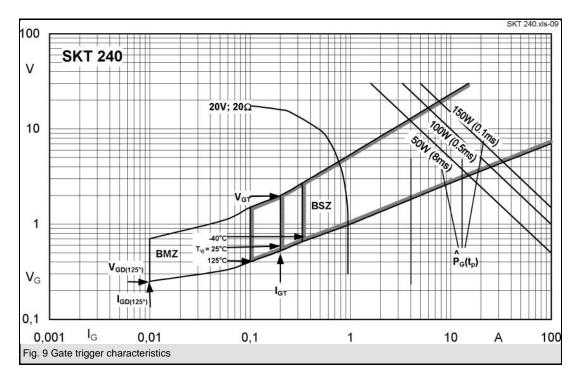


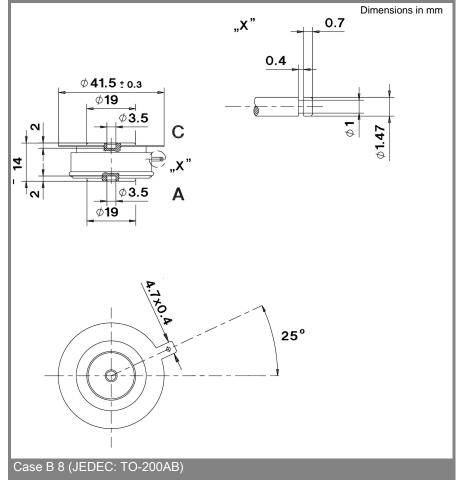


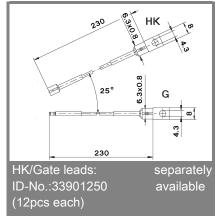












^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 240

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.