

Vishay Semiconductors

Phase Control SCR, 70 A

- 40 °C to 125 °C

C	TO-247
Suber	10-247

 $T_{\rm J}$

PRODUCT SUMMARY						
Package	Super TO-247					
Diode variation	Single SCR					
I _{T(AV)}	70 A					
V_{DRM}	1200 V, 1600 V					
V_{TM}	1.4 V					
I _{GT}	100 A					

FEATURES

- High surge capability
- High voltage input rectification
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified for industrial level

ROHS*

APPLICATIONS

- · AC switches
- High voltage input rectification (soft start)
- High current crow-bar
- Other phase-control circuits
- Designed to be used with Vishay input diodes, switches, and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-70TPS..PbF High Voltage Series of silicon controlled rectifiers are specifically designed for high and medium power switching, and phase control applications.

MAJOR RATINGS AND CHARACTERISTICS							
PARAMETER	TEST CONDITIONS	VALUES	UNITS				
I _{T(AV)}	Sinusoidal waveform	70	Λ.				
I _{RMS}	Lead current limitation	75	А				
V_{RRM}/V_{DRM}	Range	1200/1600	V				
I _{TSM}		1400	А				
V _T	100 A, T _J = 25 °C	1.4	V				
dV/dt		500	V/µs				
dl/dt		150	A/µs				
T _J		- 40 to 125	°C				

VOLTAGE RATINGS			
PART NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA
VS-70TPS12PbF	1200	1300	15
VS-70TPS16PbF	1600	1700	15

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Semiconductors

Phase Control SCR, 70 A

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum average on-state current	I _{T(AV)}	$T_C = 82$ °C, 180 ° conduction half sine wa	ve	70	
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}	Lead current limitation	Lead current limitation		А
Maximum peak, one-cycle	l	10 ms sine pulse, rated V _{RRM} applied		1200	
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied		1400	
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V _{RRM} applied	Initial $T_J = T_J$ maximum	7200	A ² s
Waxiiiluiii i-t ioi lusiiig	1-1	10 ms sine pulse, no voltage reapplied	maximam	10 200	
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied	102 000	A²√s	
Low level value of threshold voltage	V _{T(TO)1}			0.916	V
High level value of threshold voltage	V _{T(TO)2}	T 405 90		1.21	V
Low level value of on-state slope resistance	r _{t1}	T _J = 125 °C		4.138	~~ 0
High level value of on-state slope resistance	r _{t2}		3.43	mΩ	
Maximum peak on-state voltage	V_{TM}	100 A, T _J = 25 °C		1.4	V
Maximum rate of rise of turned-on current	dl/dt	T _J = 25 °C	150	A/μs	
Maximum holding current	I _H			200	
Maximum latching current	ΙL	T _J = 25 °C		400	^
Marian and all and land	1 //	T _J = 25 °C		1.0	mA
Maximum reverse and direct leakage current	I _{RRM} /I _{DRM}	$T_J = 125 ^{\circ}\text{C}$ $V_R = \text{Rated } V_{RRM}/V_R$	ORM	15	
Maximum rate of rise of off-state voltage	dV/dt	dt T _J = 125 °C 500			V/µs

TRIGGERING					
PARAMETER	SYMBOL		TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}	T = 30 µs		10	W
Maximum average gate power	P _{G(AV)}	1 = 30 μs		2.5	VV
Maximum peak gate current	I _{GM}			2.5	Α
Maximum peak negative gate voltage	- V _{GM}			10	
	V _{GT}	T _J = - 40 °C		4.0	V
Maximum required DC gate voltage to trigger		T _J = 25 °C	Anode supply = 6 V resistive load	1.5	
		T _J = 125 °C		1.1	
		T _J = - 40 °C		270	
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		100	mA
		T _J = 125 °C		80	
Maximum DC gate voltage not to trigger	V_{GD}	T _J = 120 °C, V _{DF}	_{RM} = Rated value	0.25	V
Maximum DC gate current not to trigger	I_{GD}			6	mA

Phase Control SCR, 70 A

Vishay Semiconductors

THERMAL AND MECH	ANICAL S	PECIFICA	TIONS		
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature	range	TJ		- 40 to 125	°C
Maximum storage temperature	range	T _{Stg}		- 40 to 150	
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	0.27	
Maximum thermal resistance, junction to ambient		R _{thJA}		40	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2	
Approximate weight				6	g
				0.21	oz.
Mounting torque	minimum			6 (5)	kgf · cm
Mounting torque	maximum			12 (10)	(lbf · in)
Marking device			Coop of the Super TO 247	70TPS	12
			Case style Super TO-247	70TPS	70TPS16

∆R _{thJ-hs} CON	DUCTIO	N PER	JUNCTI	ON							
DEVICE	s	INE HALF	WAVE CO	NDUCTIO	N	RECTANGULAR WAVE CONDUCTION				UNITS	
DEVICE	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VS-70TPSPbF	0.078	0.092	0.117	0.172	0.302	0.053	0.092	0.125	0.180	0.306	°C/W

Note

• The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

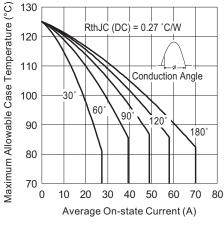


Fig. 1 - Current Rating Characteristics

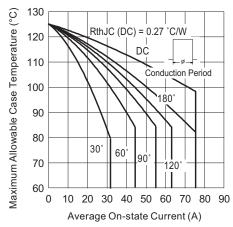


Fig. 2 - Current Rating Characteristics

Vishay Semiconductors

Phase Control SCR, 70 A

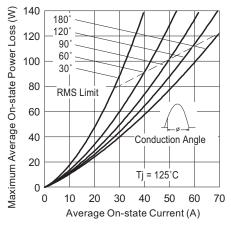


Fig. 3 - On-State Power Loss Characteristics

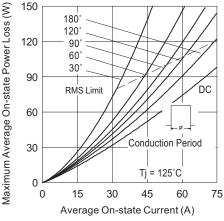


Fig. 4 - On-State Power Loss Characteristics

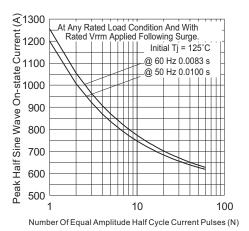


Fig. 5 - Maximum Non-Repetitive Surge Current

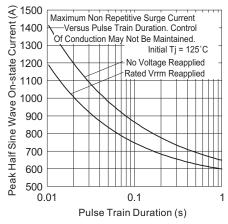


Fig. 6 - Maximum Non-Repetitive Surge Current

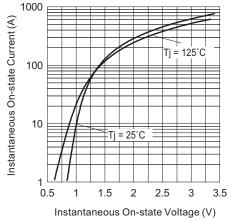


Fig. 7 - On-State Voltage Drop Characteristics

Phase Control SCR, 70 A

Vishay Semiconductors

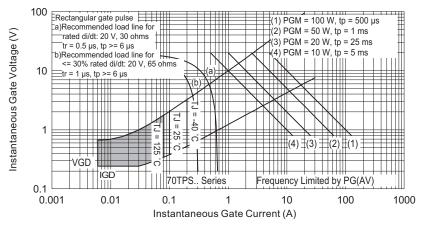


Fig. 8 - Gate Characteristics

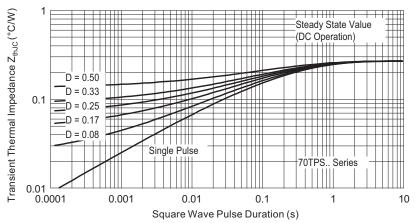


Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

Phase Control SCR, 70 A

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (70 = 70 A)

Circuit configuration:

T = Thyristor

4 - Package:

P = Super TO-247

5 - Type of silicon:

S = Standard recovery rectifier

3 – Standard recovery rectiller

12 = 1200 V 16 = 1600 V

Voltage code x 100 = V_{RRM} —
 None = Standard production

• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95073					
Part marking information <u>www.vishay.com/doc?95070</u>					

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1