

Vishay High Power Products

Phase Control SCR, 10 A

PRODUCT SUMMARY			
V _T at 10 A < 1.4 V			
I _{TSM}	200 A		
V _{RRM}	800/1200 V		

DESCRIPTION/FEATURES

The 16TTS..PbF High Voltage Series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology

RoHS COMPLIANT

used has reliable operation up to 125 °C junction temperature.

Typical applications are in input rectification (soft start) and these products are designed to be used with Vishay HPP input diodes, switches and output rectifiers which are available in identical package outlines.

This product has been designed and qualified for industrial level and lead (Pb)-free ("PbF" suffix).

OUTPUT CURRENT IN TYPICAL APPLICATIONS				
APPLICATIONS	TIONS SINGLE-PHASE BRIDGE THREE-PHASE BRIDGE UNITS			
Capacitive input filter $T_A = 55$ °C, $T_J = 125$ °C, common heatsink of 1 °C/W	13.5	17	A	

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
I _{T(AV)}	Sinusoidal waveform	10	٨		
I _{RMS}		16	A		
V _{DRM} /V _{RRM}	Range ⁽¹⁾	800/1200	V		
I _{TSM}		200	А		
V _T	10 A, T _J = 25 °C	1.4	V		
dV/dt		500	V/µs		
dl/dt		150	A/µs		
TJ	Range	- 40 to 125	۵°		

Note

⁽¹⁾ For higher voltage up to 1600 V contact factory

VOLTAGE RATINGS						
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA			
16TTS08PbF	800	800	10			
16TTS12PbF	1200	1200	10			

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 94603 Revision: 15-Sep-08

Vishay High Power Products Phase Control SCR, 10 A

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL			VALUES		
PARAMETER	STMBUL		TEST CONDITIONS		MAX.	UNITS
Maximum average on-state current	I _{T(AV)}	T _C = 98 °C, 1	= 98 °C, 180° conduction, half sine wave 10		0	
Maximum RMS on-state current	I _{RMS}			1	6	
Maximum peak, one-cycle,	1	10 ms sine p	ulse, rated V _{RRM} applied	170		A
non-repetitive surge current	I _{TSM}	10 ms sine p	ulse, no voltage reapplied	200		
Maximum 12t for fusing	l ² t	10 ms sine p	ulse, rated V _{RRM} applied	14	14	A20
Maximum I ² t for fusing	I-t	10 ms sine pulse, no voltage reapplied		200		A ² s
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10 ms, no voltage reapplied		20	00	A²√s
Maximum on-state voltage drop	V _{TM}	10 A, T _J = 25 °C		1.4		V
On-state slope resistance	r _t	T ₁ = 125 °C		24	l.0	mΩ
Threshold voltage	V _{T(TO)}			1	.1	V
	1 /1	T _J = 25 °C	T _J = 25 °C		.5	
Maximum reverse and direct leakage current	I _{RM} /I _{DM}	$T_J = 125 \text{ °C}$ $V_R = \text{Rated } V_{RRM}/V_{DRM}$		1	0	
Holding current	I _H	Anode supply = 6 V, resistive load, initial $I_T = 1 A$ 16TTS08PbF, 16TTS12PbF		-	100	mA
Maximum latching current	١L	Anode supply = 6 V, resistive load		20	00	
Maximum rate of rise of off-state voltage	dV/dt			50	00	V/µs
Maximum rate of rise of turned-on current	dl/dt			1	50	A/μs

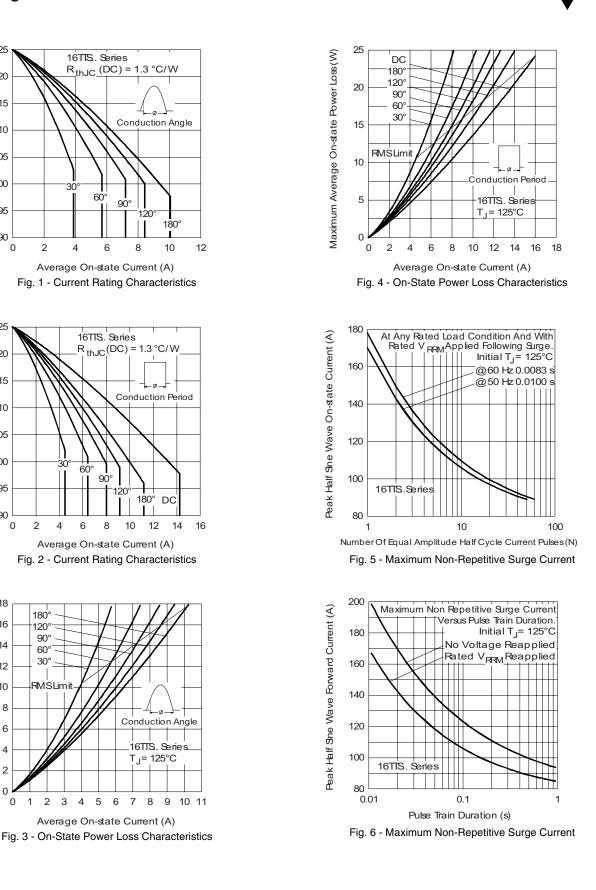
TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P _{GM}		8.0	14/	
Maximum average gate power	P _{G(AV)}		2.0	W	
Maximum peak positive gate current	+ I _{GM}		1.5	А	
Maximum peak negative gate voltage	- V _{GM}		10	V	
	I _{GT}	Anode supply = 6 V, resistive load, $T_J = -65 \ ^{\circ}C$	90		
Maximum required DC gate current to trigger		Anode supply = 6 V, resistive load, $T_J = 25 \ ^{\circ}C$	60	mA	
		Anode supply = 6 V, resistive load, $T_J = 125 \ ^{\circ}C$	35		
	V _{GT}	Anode supply = 6 V, resistive load, $T_J = -65 \ ^{\circ}C$	3.0		
Maximum required DC gate voltage to trigger		Anode supply = 6 V, resistive load, $T_J = 25 \ ^{\circ}C$	2.0	V	
		Anode supply = 6 V, resistive load, $T_J = 125 \ ^{\circ}C$	1.0	v	
Maximum DC gate voltage not to trigger	V_{GD}	T 105 °C V Batad value	0.2		
Maximum DC gate current not to trigger	I _{GD}	T _J = 125 °C, V _{DRM} = Rated value 2.0		mA	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9	
Typical reverse recovery time	t _{rr}	T ₁ = 125 °C	4	μs
Typical turn-off time	tq	1J = 125 C	110	

Phase Control SCR, 10 A Vishay High Power Products

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C	
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	1.3		
Maximum thermal resistance, junction to ambient		R _{thJA}		62	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.5		
				2	g	
Approximate weight				0.07	oz.	
Mounting torque	minimum			6 (5)	kgf ⋅ cm	
	maximum			12 (10)	(lbf · in)	
Marking davias				16T	rso8	
Marking device			Case style TO-220AB	16T	16TTS12	

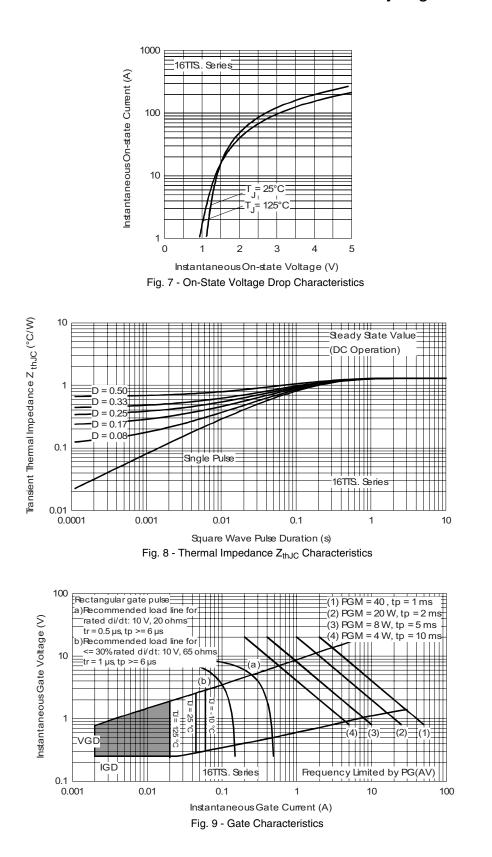
90°


60°

Maximum Average On-state Power Loss(W)

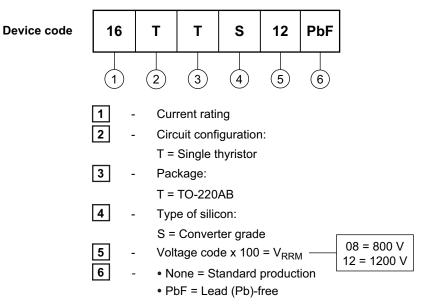
Maximum Allowable Case Temperature (°C)

Maximum Allowable Case Temperature (°C)


Vishay High Power Products Phase Control SCR, 10 A

VISHA

Phase Control SCR, 10 A Vishay High Power Products



Document Number: 94603 Revision: 15-Sep-08

Vishay High Power Products Phase Control SCR, 10 A

ORDERING INFORMATION TABLE

Note: For higher voltage up to 1600 V contact factory

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95222				
Part marking information	http://www.vishay.com/doc?95225			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.