SKT 50

Stud Thyristor

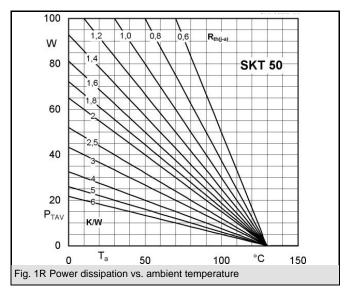
Line Thyristor

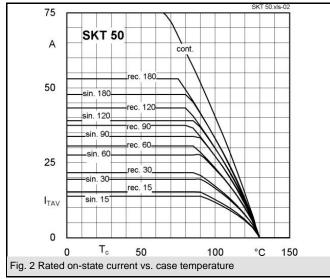
SKT 50

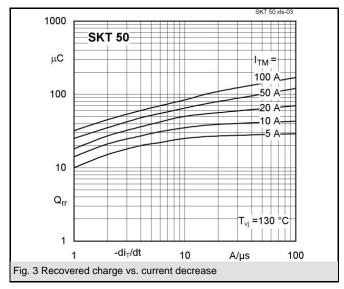
Features

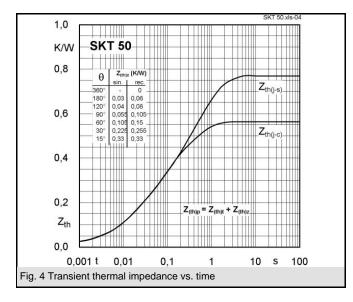
- Hermetic metal case with glass insulator
- Threaded stud ISO M8 or UNF 1/4-28
- International standard case

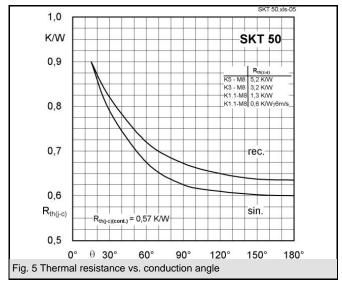
Typical Applications*

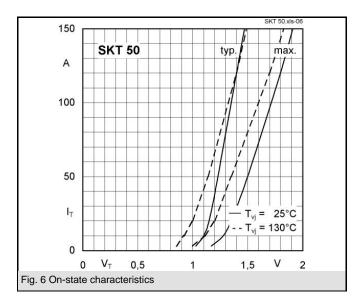

- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 68 $\Omega/11 \text{ W}$, C = 0,22 μF
- 1) Available with UNF thread 1/4-28 UNF2A, e. g. SKT 50/06D UNF

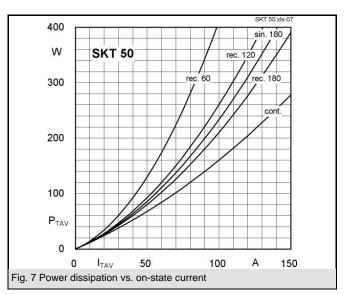

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 78 A (maximum value for continuous operation)		
V	V	I _{TAV} = 50 A (sin. 180; T _c = 78 °C)		
700	600	SKT 50/06D ¹⁾		
900	800	SKT 50/08D		
1300	1200	SKT 50/12E ¹⁾		
1500	1400	SKT 50/14E ¹⁾		
1700	1600	SKT 50/16E ¹⁾		
1900	1800	SKT 50/18E		

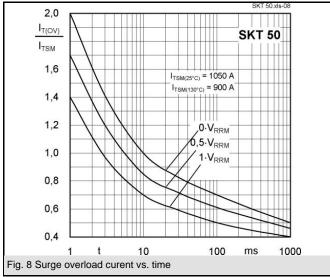

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	33 (45)	Α
I _D	K5; T _a = 45 °C; B2 / B6	25 / 36	Α
	K3; T _a = 45 °C; B2 / B6	36 /50	Α
I _{RMS}	K3; T _a = 45 °C; W1C	40	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	1050	Α
	T _{vj} = 130 °C; 10 ms	900	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	5000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	4000	A²s
V _T	T _{vi} = 25 °C; I _T = 120 A	max. 1,8	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1,1	V
r _T `	T _{vj} = 130 °C	max. 5	$m\Omega$
$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 8	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	1,5	μs
(di/dt) _{cr}	T _{vj} = 130 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	T _{vj} = 130 °C ,	100	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	250 / 400	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj}^{'} = 25 ^{\circ}C; d.c.$	min. 150	mA
V_{GD}	T _{vj} = 130 °C; d.c.	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 5	mA
R _{th(j-c)}	cont.	0,57	K/W
R _{th(j-c)}	sin. 180	0,6	K/W
R _{th(j-c)}	rec. 120	0,65	K/W
R _{th(c-s)}		0,2	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 55 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	4 (UNF: 2,5)	Nm
а		5 * 9,81	m/s²
m	approx.	22	g
Case		B 3	

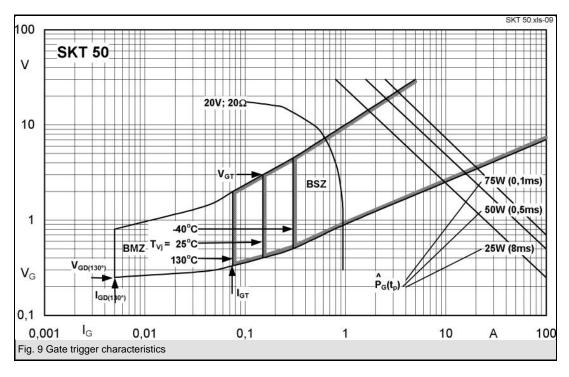


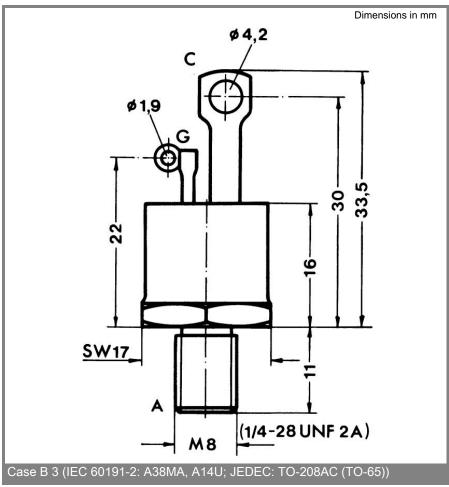












^{*} The specifications of our components may not be considered as an assurance of component characteristics.

Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 50

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.