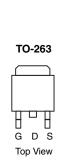


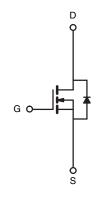
New Product

Vishay Siliconix

N-Channel 75-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{(BR)DSS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)			
75	0.007 at V _{GS} = 10 V	110			


FEATURES


- TrenchFET[®] Power MOSFET
- · New Low Thermal Resistance Package

APPLICATIONS

- Automotive
 - Boardnet 42-VEP and ABS
 - Motor Drives
- High Current
- DC/DC Converters

Ordering Information: SUM110N08-07

SUM110N08-07-E3 (Lead (Pb)-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATING	S T _A = 25 °C, un	less otherwis	se noted	
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	75	V
Gate-Source Voltage		V _{GS}	± 20	v
Continuous Drain Current (T _J = 175 °C)	$T_{\rm C} = 25 ^{\circ}{\rm C}$ $T_{\rm C} = 125 ^{\circ}{\rm C}$,	110	
	T _C = 125 °C	I _D	63 ^a	Α
Pulsed Drain Current		I _{DM}	350	^
Avalanche Current		I _{AR}	75	
Repetitive Avalanche Energy ^a	L = 0.1 mH	E _{AR}	280	mJ
Mariana Barra Birata di ad	$T_C = 25 ^{\circ}C$ $T_A = 25 ^{\circ}C^d$	D.	200 ^b	W
Maximum Power Dissipation ^a	T _A = 25 °C ^d	P _D	3.7	
Operating Junction and Storage Temperature Range		$T_{.l}, T_{sta}$	- 55 to 175	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Limit	Unit	
Maximum Junction-to-Ambient	PCB Mount ^c	R _{thJA}	40	°C/W	
Maximum Junction-to-Case		R_{thJC}	0.75		

Notes

- a. Duty cycle \leq 1 %.
- b. See SOA curve for voltage derating.
- c. When mounted on 1" square PCB (FR-4 material).

Document Number: 71829 S-60418–Rev. E, 20-Mar-06

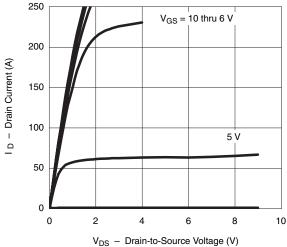
^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

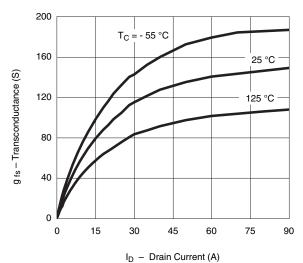
New Product

SPECIFICATIONS $T_J = 25^{\circ}$						
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	75			V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.0	
Gate Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA
Zero Gate Voltage Drain Current		$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$		1		
	I _{DSS}	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			50	μΑ
		$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$			250	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	120			Α
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		0.0055	0.007	
	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}, T_J = 125 \text{ °C}$		0.013		Ω
	, ,	$V_{GS} = 10 \text{ V, I}_{D} = 30 \text{ A, T}_{J} = 175 ^{\circ}\text{C}$			0.017	1
Forward Transconductance	9 _{fs}	V _{DS} = 15 V, I _D = 30 A	30			S
Dynamic ^b						
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		5250		pF
Output Capacitance	C _{oss}			700		
Reverse Transfer Capacitance	C _{rss}			310		
Total Gate Charge ^c	Q _q			90	165	nC
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 35 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 110 \text{ A}$		24		
Gate-Drain Charge ^c	Q _{gd}			27		
Turn-On Delay Time ^c	t _{d(on)}			20	30	
Rise Time ^c	t _r	V_{DD} = 35 V, R_L = 0.4 Ω		100	150	ns
Turn-Off DelayTime ^c	t _{d(off)}	$I_D \cong 85 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$		45	70	
Fall Time ^c	t _f	1		75	115	
Source-Drain Diode Ratings and Cha	racteristics (T _C	= 25 °C) ^b			<u>. </u>	
Continous Current	Is				110	А
Pulsed Current	I _{SM}				350	
Forward Voltage ^a	V _{SD}	I _F = 110 A, V _{GS} = 0 V		1.0	1.5	V
Reverse Recovery Time	t _{rr}	. 55		75	120	ns
Peak Reverse Recovery Current	I _{RM(REC)}	I _F = 85 A, di/dt = 100 A/μs		3.5	7	Α
Reverse Recovery Charge	Q _{rr}	,		0.13	0.30	μC

Notes

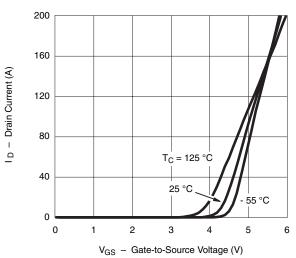

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

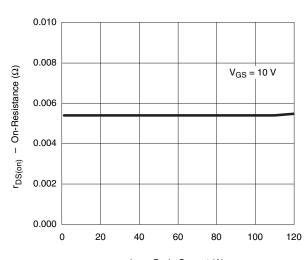


New Product

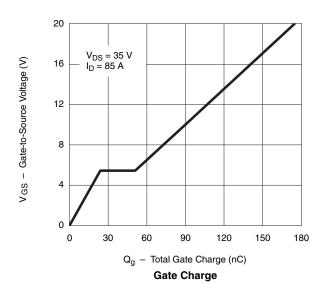
TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



V_{DS} - Drain-to-Source Voltage (V Output Characteristics



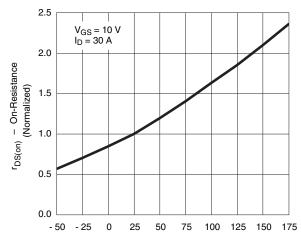
Transconductance



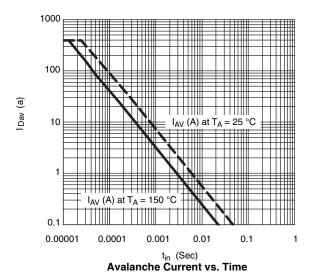
Transfer Characteristics

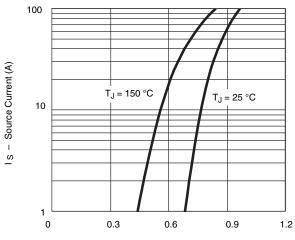
I_D - Drain Current (A)

On-Resistance vs. Drain Current

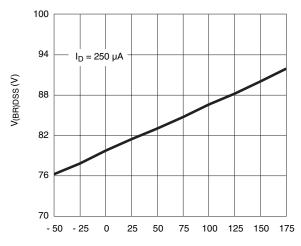

Document Number: 71829 S-60418-Rev. E, 20-Mar-06

Vishay Siliconix


New Product



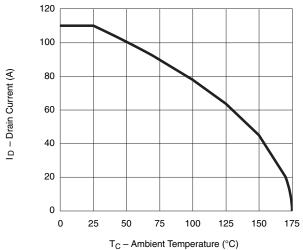
TYPICAL CHARACTERISTICS $T_A = 25 \, ^{\circ}C$, unless otherwise noted

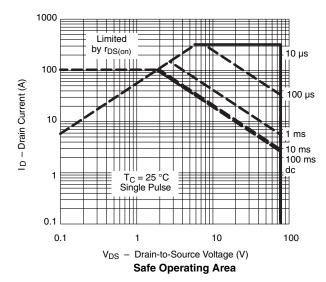


 $T_J - \mbox{Junction Temperature (°C)}$ On-Resistance vs. Junction Temperature

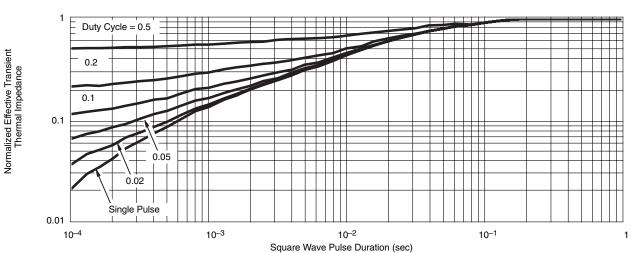
V_{SD} - Source-to-Drain Voltage (V)
Source-Drain Diode Forward Voltage

T_J – Junction Temperature (°C)


Drain Source Breakdown vs.


Junction Temperature

New Product


Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

Maximum Avalanche and Drain Current vs. Case Temperature

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71829.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com