PD - 90493F

International **TOR** Rectifier

POWER MOSFET THRU-HOLE (TO-254AA)

Product Summary

Part Number	RDS(on)	ID
IRFM450	0.415 Ω	12A

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

IRFM450 JANTX2N7228 JANTXV2N7228 REF: MIL-PRF-19500/592 500V, N-CHANNEL HEXFET[®] MOSFET TECHNOLOGY

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Light-weight

	Parameter		Units	
ID @ VGS = 10V, TC = 25°C Continuous Drain Current		12		
$I_D @ V_{GS} = 10V, T_C = 100^{\circ}C$	Continuous Drain Current	8.0	A	
IDM	Pulsed Drain Current ①	48		
P _D @ T _C = 25°C	Max. Power Dissipation	150	W	
	Linear Derating Factor	1.2	W/°C	
VGS	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	750	mJ	
IAR	Avalanche Current ①	12	Α	
EAR	Repetitive Avalanche Energy ①	15	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns	
Тј	Operating Junction	-55 to 150		
TSTG	Storage Temperature Range		°C	
	Lead Temperature	300 (0.063 in.(1.6mm) from case for 10s)		
	Weight	9.3 (Typical)	g	

Absolute Maximum Ratings

For footnotes refer to the last page

www.irf.com

Qgs

Qgd

^td(on)

td(off) tf

Ciss

Coss

Crss

Ls+LD

tr

International **IOR** Rectifier

VDS = 250V

V_{DD} = 250V, I_D = 12A,

 $V_{GS} = 10V, R_{G} = 2.35\Omega$

Measured from drain lead (6mm/0.25in. from

package) to source lead (6mm/0.25in. from package

VGS = 0V, VDS = 25V

f = 1.0MHz

nC

ns

nΗ

pF

19

70

35

190

170

130

—

—

_

6.8

2700

600

240

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500	-	-	V	$V_{GS} = 0V, I_{D} = 1.0mA$
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	_	0.68	-	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source On-State	_	—	0.415	Ω	VGS = 10V, ID = 8.0A (4)
	Resistance	—	—	0.515		VGS = 10V, ID = 12A
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
9fs	Forward Transconductance	6.5	—	—	S (7)	V _{DS} > 15V, I _{DS} = 8.0A ④
IDSS	Zero Gate Voltage Drain Current		—	25	μA	VDS= 400V ,VGS=0V
		—	—	250	μΑ	$V_{DS} = 400V,$
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	—	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	-	-	-100	IIA	VGS = -20V
Qq	Total Gate Charge		-	120		VGS =10V, ID = 12A

_

_

_

—

—

_

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

Gate-to-Source Charge

Turn-On Delay Time

Turn-Off Delay Time

Total Inductance

Input Capacitance

Output Capacitance

Rise Time

Fall Time

Gate-to-Drain ('Miller') Charge

Reverse Transfer Capacitance

	Parameter		Min	Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (B	ody Diode)		_	12	Δ.		
ISM	Pulse Source Current (Body D	iode) 1		—	48	A		
VSD	Diode Forward Voltage			—	1.7	V	$T_j = 25^{\circ}C, I_S = 12A, V_{GS} = 0V ④$	
t _{rr}	Reverse Recovery Time			—	1600	nS	Tj = 25°C, IF = 12A, di/dt ≤ 100A/μs	
QRR	Reverse Recovery Charge			—	14	μC	$V_{DD} \leq 50V @$	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{\mbox{\scriptsize S}}$ + $L_{\mbox{\scriptsize D}}.$						

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	_	0.83		
RthJCS	Case-to-Sink	-	0.21	-	°C/W	
R _{th} JA	Junction-to-Ambient	—	_	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

www.irf.com

2

International

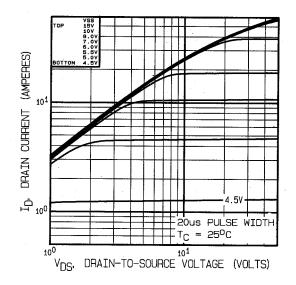


Fig 1. Typical Output Characteristics

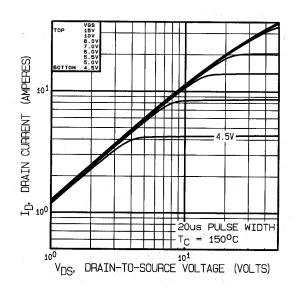


Fig 2. Typical Output Characteristics

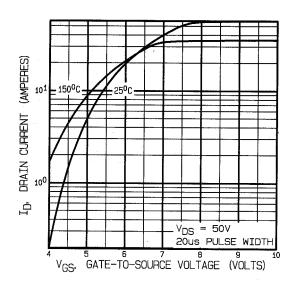


Fig 3. Typical Transfer Characteristics

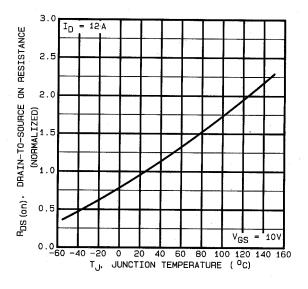
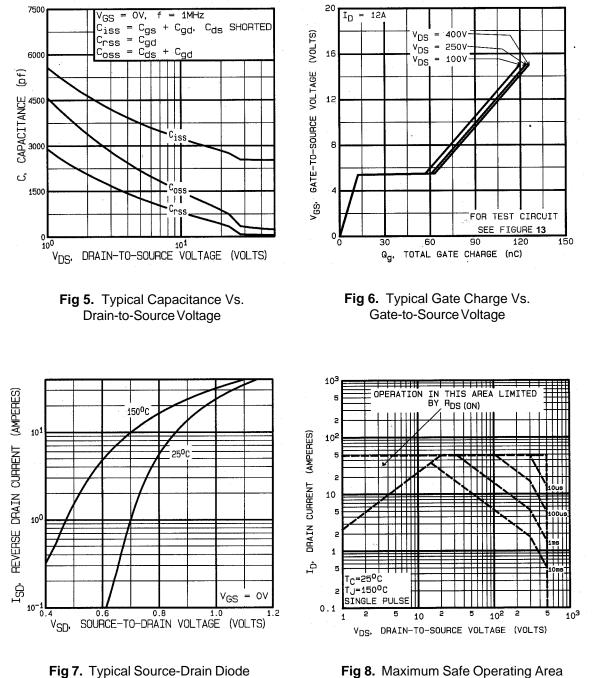
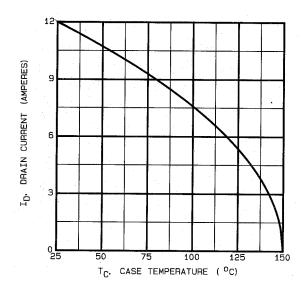


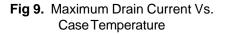
Fig 4. Normalized On-Resistance Vs. Temperature

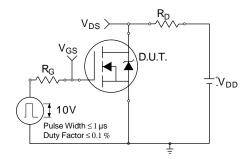
3

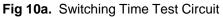
International **ICR** Rectifier




Fig 8. Maximum Safe Operating Area


www.irf.com


4


Forward Voltage

International

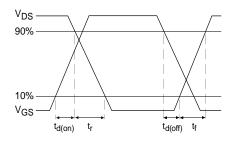


Fig 10b. Switching Time Waveforms

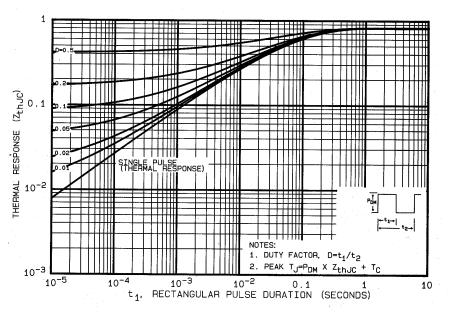


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

International **IOR** Rectifier

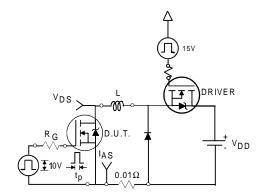


Fig 12a. Unclamped Inductive Test Circuit

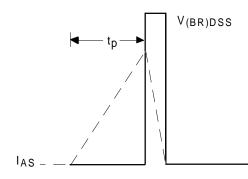


Fig 12b. Unclamped Inductive Waveforms

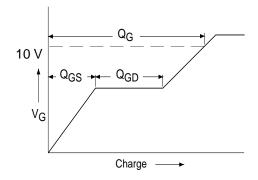


Fig 13a. Basic Gate Charge Waveform

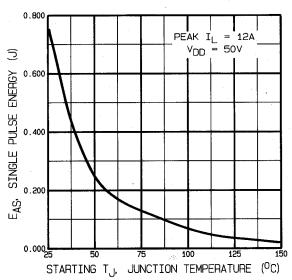


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

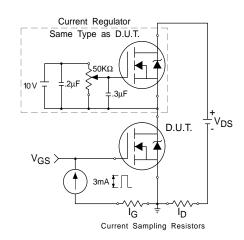


Fig 13b. Gate Charge Test Circuit

www.irf.com

6

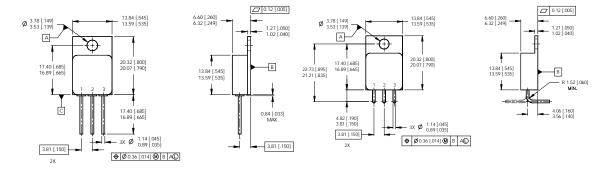
International

Footnotes:

① Repetitive Rating; Pulse width limited by maximum junction temperature.

2 VDD = 50V, starting TJ = 25°C, L= 10.4mH Peak IL =12A, VGS = 10V

- $3 I_{SD} \le 12A$, di/dt $\le 130A/\mu s$,
- $V_{DD} \le 500V$, $T_{J} \le 150^{\circ}C$


PIN ASSIGNMENTS

1 = DRAIN

2 = SOURCE 3 = GATE

④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

Case Outline and Dimensions — TO-254AA

NOTES:

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.

ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
CONTROLLING DIMENSION: INCH.

4. CONFORMS TO JEDEC OUTLINE TO-254AA

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 02/02

www.irf.com