

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	500			
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.85		
Q _g (Max.) (nC)	39			
Q _{gs} (nC)	10			
Q _{gd} (nC)	19			
Configuration	Single			

N-Channel MOSFET

FEATURES

• Halogen-free According to IEC 61249-2-21 **Definition**

- Reduced Gate Drive Requirement
- Enhanced 30 V V_{GS} Rating
- Reduced C_{iss}, C_{oss}, C_{rss}
- **Extremely High Frequency Operation**
- Repetitive Avalanche Rated
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

This new series of low charge Power MOSFETs achieve significantly lower gate charge then conventional Power MOSFETs. Utilizing the new LCDMOS (low charge device Power MOSFETs) technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high frequency applications. Frequencies of a few MHz at high current are possible using the new low charge Power MOSFETs.

These device improvements combined with the proven ruggedness and reliability that characterize Power MOSFETs offer the designer a new power transistor standard for switching applications.

ORDERING INFORMATION			
Package	D ² PAK (TO-263)	D ² PAK (TO-263)	I ² PAK (TO-262)
Lead (Pb)-free and Halogen-free	SiHF840LCS-GE3	-	SiHF840LCL-GE3
Lead (Pb)-free	IRF840LCSPbF	-	IRF840LCLPbF
	SiHF840LCS-E3	-	SiHF840LCL-E3
SnPb	IRF840LCS	IRF840LCSTRR ^a	IRF840LCL
	SiHF840LCS	SiHF840LCSTRa	SiHF840LCL

Note

a. See device orientation.

ABSOLUTE MAXIMUM RATINGS (T_C	– 25 O, um	iess offici wis	se noteu)		_	
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V_{DS}	500	V	
Gate-Source Voltage			V_{GS}	± 30	7 v	
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C	- I _D	8.0		
	V _{GS} at 10 V	T _C = 100 °C		5.1	Α	
Pulsed Drain Current ^{a, e}			I _{DM}	28		
Linear Derating Factor			1.0	W/°C		
Single Pulse Avalanche Energy ^{b, e}			E _{AS}	510	mJ	
Avalanche Current ^a			I _{AR}	8.0	Α	
Repetiitive Avalanche Energya			E _{AR}	13	mJ	
Maximum Power Dissipation	T _C = 25 °C T _A = 25 °C		P _D	125	W	
				3.1		
Peak Diode Recovery dV/dtc, e		dV/dt	3.5	V/ns		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	80		
Soldering Recommendations (Peak Temperature)	for	10 s	-	300 ^d	°C	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting T_J = 25 °C, L = 14 mH, R_g = 25 Ω , I_{AS} = 8.0 A (see fig. 12). c. I_{SD} \leq 8.0 A, dI/dt \leq 100 A/µs, V_{DD} \leq V_{DS}, T_J \leq 150 °C.

- 1.6 mm from case.
- Uses IRF840LC, SiHF840LC data and test conditions.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient (PCB Mounted, Steady-State) ^a	R _{thJA}	-	40	°C/W	
Maximum Junction-to-Case (Drain)	R_{thJC}	-	1.0		

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	Reference to 25 °C, I _D = 1 mA ^c		0.63	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V _{DS} = V _{GS} , I _D = 250 μA		-	4.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V		-	± 100	nA
Zero Gate Voltage Drain Current	1	V _{DS} = 500 V, V _{GS} = 0 V		-	-	25	^
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 400 \	/, V _{GS} = 0 V, T _J = 125 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 4.8 A ^b	-	-	0.85	Ω
Forward Transconductance	9fs	V _{DS} = 50 V, I _D = 4.8 A ^b		4.0	-	-	S
Dynamic		·					
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$ $f = 1.0 \text{ MHz}, \text{ see fig. } 5^{\text{c}}$		-	1100	-	pF
Output Capacitance	C _{oss}			-	170	-	
Reverse Transfer Capacitance	C _{rss}			-	18	-	
Total Gate Charge	Q_g			-	-	39	
Gate-Source Charge	Q_{gs}	V _{GS} = 10 V	$V_{GS} = 10 \text{ V}$ $I_D = 8.0 \text{ A}, V_{DS} = 400 \text{ V},$ see fig. 6 and $13^{b, c}$		-	10	nC
Gate-Drain Charge	Q_{gd}				-	19	
Turn-On Delay Time	t _{d(on)}		V _{DD} = 250 V, I _D = 8.0 A,		12	-	- ns
Rise Time	t _r	V _{DD} =			25	-	
Turn-Off Delay Time	t _{d(off)}	$R_g = 9.1 \ \Omega, \ R_D = 30 \ \Omega, \ \text{see fig. } 10^{b, \ c}$		-	27	-	
Fall Time	t _f			-	19	-	
Drain-Source Body Diode Characteristic	s	·					
Continuous Source-Drain Diode Current	I _S	showing the	MOSFET symbol showing the		-	8.0	А
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	28	_ ^
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 8.0 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$		-	-	2.0	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 8.0 A, dl/dt = 100 A/μs ^{b, c}		-	490	740	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	3.0	4.5	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on is dominated by L _S and L _D)				

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width $\leq 300 \,\mu s$; duty cycle $\leq 2 \,\%$.
- c. Uses SiHF840LC data and test conditions.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

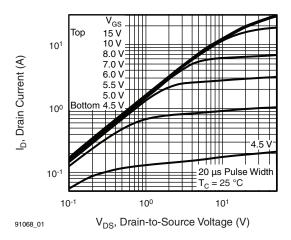


Fig. 1 - Typical Output Characteristics

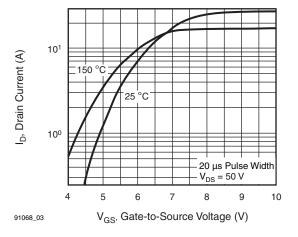


Fig. 3 - Typical Transfer Characteristics

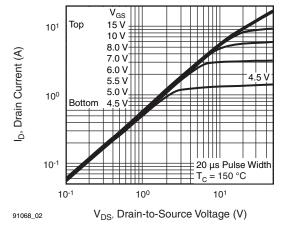


Fig. 2 - Typical Output Characteristics

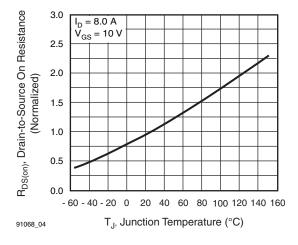


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

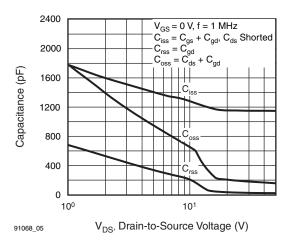


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

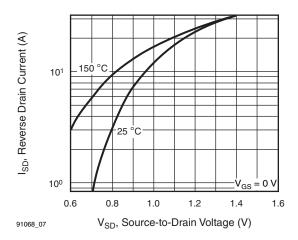


Fig. 7 - Typical Source-Drain Diode Forward Voltage

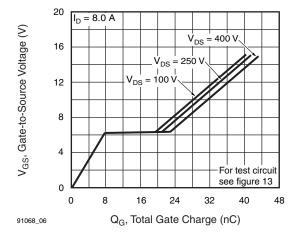


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

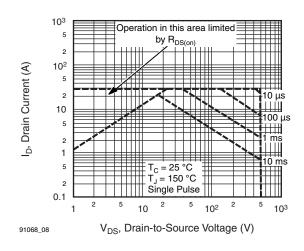


Fig. 8 - Maximum Safe Operating Area

Vishay Siliconix

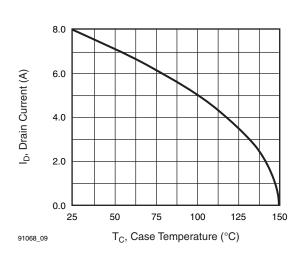


Fig. 9 - Maximum Drain Current vs. Case Temperature

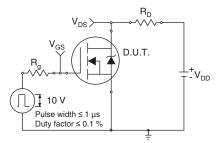


Fig. 10a - Switching Time Test Circuit

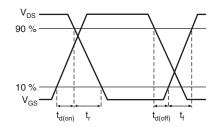


Fig. 10b - Switching Time Waveforms

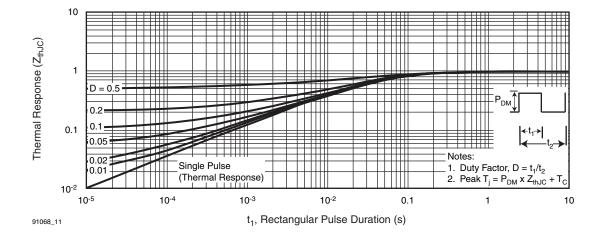


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

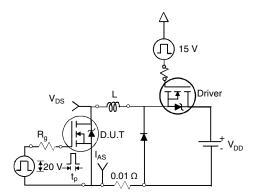


Fig. 12a - Unclamped Inductive Test Circuit

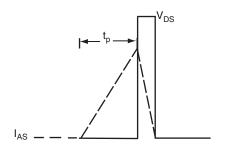


Fig. 12b - Unclamped Inductive Waveforms

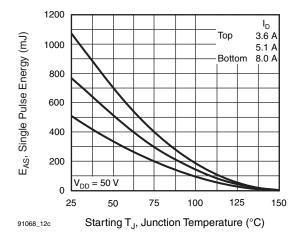


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

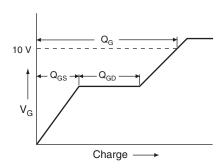


Fig. 13a - Basic Gate Charge Waveform

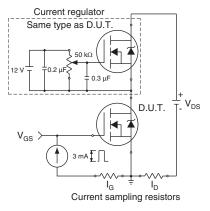
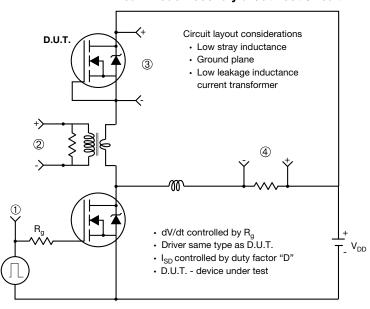



Fig. 13b - Gate Charge Test Circuit

Vishay Siliconix

Peak Diode Recovery dV/dt Test Circuit

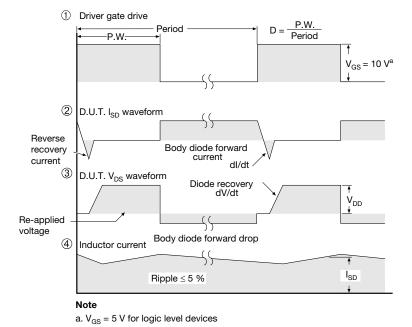


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91068.

Document Number: 91068 S10-1477-Rev. B, 05-Jul-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1