N-channel 100V-0.030 - 25A - DPAK
 Low gate charge STripFET ${ }^{\text {TM }}$ II Power MOSFET

General features

Type	$\mathbf{V}_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$
STD25NF10L	100 V	$<0.035 \Omega$	25 A

- Exceptional dv/dt capability
- 100% avalanche tested

■ Low threshold device

- Logic level device

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

Applications

■ Switching application

DPAK

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STD25NF10LT4	D25NF10L	DPAK	Tape \& reel

Contents

1 Electrical ratings 3
2 Electrical characteristics 4
2.1 Electrical characteristics (curves) 6
3 Test circuit 8
4 Package mechanical data 9
5 Packing mechanical data 11
6 Revision history 12

1

Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	100	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{kS}\right)$	100	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate- source voltage	± 16	V
$\mathrm{I}_{\mathrm{D}}{ }^{(1)}$	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	25	A
I_{D}	Drain current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	21	A
$\mathrm{I}_{\mathrm{DM}}{ }^{(2)}$	Drain current (pulsed)	100	A
$\mathrm{P}_{\mathrm{tot}}$	Total dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	W
	Derating Factor	0.67	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{dv} / \mathrm{dt}^{(3)}$	Peak diode recovery avalanche energy	20	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{E}_{\mathrm{AS}}{ }^{(4)}$	Single pulse avalanche energy	450	mJ
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-55 to 175	${ }^{\circ} \mathrm{C}$
T_{j}	Max. operating junction temperature		

1. Current limited by package
2. Pulse width limited by safe operating area.
3. $I_{S D} \leq 25 A, d i / d t \leq 300 A / \mu s, V_{D D}=V(B R) D S S, T_{j} \leq T_{J M A X}$
4. Starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=12.5 \mathrm{~A} \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}$

Table 2. Thermal data

Rthj-case	Thermal resistance junction-case max	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-pcb	Thermal resistance junction-pcb max ${ }^{(1)}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Maximum lead temperature for soldering purpose	275	${ }^{\circ} \mathrm{C}$

1. When Mounted on 1 inch2 FR-4 board, 2 oz of Cu .

2 Electrical characteristics

($\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	100			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero gate voltage drain current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=$ Max rating $\mathrm{V}_{\mathrm{DS}}=\mathrm{Max}$ rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	
10	$\mu \mathrm{~A}$					
$\mu \mathrm{~A}$						

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\mathrm{g}_{\mathrm{fs}}{ }^{(1)}$	Forward transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12.5 \mathrm{~A}$		24		S
$\mathrm{C}_{\text {iss }}$ Coss $\mathrm{C}_{\text {rss }}$	Input capacitance Output capacitance Reverse transfer capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$		$\begin{gathered} 1710 \\ 250 \\ 110 \end{gathered}$		pF pF pF
$\begin{gathered} \mathrm{t}_{\mathrm{d}(\mathrm{on})} \\ \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{d}(\mathrm{off})} \\ \mathrm{t}_{\mathrm{f}} \end{gathered}$	Turn-on delay time Rise time Turn-off delay time Fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12.5 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \\ & \text { (see Figure 13) } \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 58 \\ & 20 \end{aligned}$		ns ns ns ns
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total gate charge Gate-source charge Gate-drain charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \\ & \text { (see Figure 14) } \end{aligned}$		$\begin{aligned} & 38 \\ & 8.5 \\ & 21 \end{aligned}$	52	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.

Table 5. Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$\stackrel{I_{S D}}{\mathrm{I}_{\mathrm{SDM}}{ }^{(1)}}$	Source-drain current Source-drain current (pulsed)				$\begin{gathered} 25 \\ 100 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{V}_{\mathrm{SD}}{ }^{(2)}$	Forward on voltage	$\mathrm{I}_{\mathrm{SD}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.5	V
t_{rr} Q_{rr} $I_{\text {RRM }}$	Reverse recovery time Reverse recovery charge Reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=25 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see Figure 15) } \end{aligned}$		$\begin{gathered} \hline 88 \\ 317 \\ 7.2 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mathrm{nC} \\ \mathrm{~A} \end{gathered}$

1. Pulse width limited by safe operating area.
2. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

Figure 4. Transfer characteristics

Figure 3. Output characterisics

Figure 5. Transconductance
Figure 6. Static drain-source on resistance

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs temperature

Figure 11. Source-drain diode forward characteristics

Figure 10. Normalized on resistance vs temperature

Figure 12. Normalized breakdown voltage vs temperature

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped Inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DPAK MECHANICAL DATA

DIM.	mm .			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
C	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
e		2.28			0.090	
e1	4.4		4.6	0.173		0.181
H	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°

5 Packing mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

TAPE MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	6.8	7	0.267	0.275
B0	10.4	10.6	0.409	0.417
B1		12.1		0.476
D	1.5	1.6	0.059	0.063
D1	1.5		0.059	
E	1.65	1.85	0.065	0.073
F	7.4	7.6	0.291	0.299
K0	2.55	2.75	0.100	0.108
P0	3.9	4.1	0.153	0.161
P1	7.9	8.1	0.311	0.319
P2	1.9	2.1	0.075	0.082
R	40		1.574	
W	15.7	16.3	0.618	0.641

6 Revision history

Table 6. Revision history

Date	Revision	Changes
21-Jun-2004	1	Preliminary version
03-Jun-2006	2	New template, no content change

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

$$
\text { © } 2006 \text { STMicroelectronics - All rights reserved }
$$

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

