International Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET®TRANSISTORS THRU-HOLE (TO-204AA/AE)

IRF9140 100V, P-CHANNEL

Product Summary

Part Number	BVDSS	RDS(on)	ΙD
IRF9140	-100V	0.2Ω	-18A

The HEXFET[®] technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of parelleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

Absolute Maximum Ratings

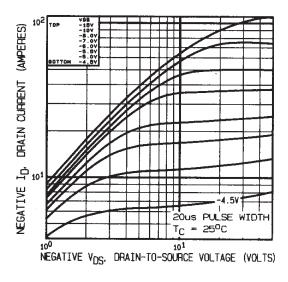
	Parameter		Units
ID @ VGS = 0V, TC = 25°C	Continuous Drain Current	-18	
ID @ VGS = 0V, TC = 100°C	Continuous Drain Current	-11	Α
I D M Pulsed Drain Current ①		-72	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	500	mJ
IAR Avalanche Current ①		-18	Α
EAR Repetitive Avalanche Ene		12.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	-5.5	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	11.5(typical)	g

For footnotes refer to the last page

www.irf.com 1 09/22/03

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Tym	May	Units	Test Conditions
			Тур	IVIAX		
BVDSS	Drain-to-Source Breakdown Voltage	-100	_	_	V	$V_{GS} = 0V$, $I_D = -1.0$ mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	-0.087	_	V/°C	Reference to 25°C, I _D = -1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	0.2		Vgs = -10V, ID = -11A 4
	Resistance	_	_	0.23	Ω	VGS =-10V, ID = -18A ④
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250\mu A$
Ot-	Forward Transconductance	6.2			S (-)	V _{DS} > -15V, I _{DS} = -11A ④
9fs		0.2		-25	369	
IDSS	Zero Gate Voltage Drain Current	_	-			VDS=-80V, VGS=0V
		_		-250	μA	VDS = -80V
						VGS = 0V, TJ = 125°C
GSS	Gate-to-Source Leakage Forward	_		-100		VGS = -20V
GSS	Gate-to-Source Leakage Reverse	_	_	100	nA	V _{GS} = 20V
Q_g	Total Gate Charge	31	_	60		VGS =-10V, ID = -18A
Qgs	Gate-to-Source Charge	3.7	—	13	nC	V _{DS} = -50V
Qgd	Gate-to-Drain ('Miller') Charge	7.0	—	35.2		
^t d(on)	Turn-On Delay Time	_	_	35		$V_{DD} = -50V, I_{D} = -18A,$
tr	Rise Time	_	_	85	ns	$V_{GS} = -10V, R_{G} = 9.1\Omega$
^t d(off)	Turn-Off Delay Time	_	_	85		
tf	Fall Time	_	_	65	nН	Measured from drain lead (6mm/
LS + LD	Total Inductance	_	6.1	_		0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iSS}	Input Capacitance	_	1400			VGS = 0V, VDS = -25V
Coss	Output Capacitance	_	600	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	200			


Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions	
Is	Continuous Source Current (Body Diode)		_	_	-18	Α		
ISM	SM Pulse Source Current (Body Diode) ①		_	_	-72	'`		
VSD	SD Diode Forward Voltage		_	_	-5.0	V	$T_j = 25$ °C, $I_S = -18A$, $V_{GS} = 0V \oplus$	
trr	Reverse Recovery Time		_	170	280	nS	$T_j = 25^{\circ}C$, $I_F = -18A$, $di/dt \le -100A/\mu s$	
QRR	Reverse Recovery Charge		_	_	3.6	μC	V _{DD} ≤ -50V ④	
ton Forward Turn-On Time Intrinsic turn-on time is negligible. Tu				ırn-on sp	beed is substantially controlled by $L_S + L_D$.			

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	1.0	°C/W	
RthJA	Junction-to-Ambient	_	_	30	C/VV	Soldered to a 2" square copper-clad board

Note: Corresponding Spice and Saber models are available on International Rectifier Website. For footnotes refer to the last page

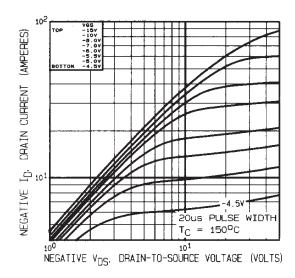
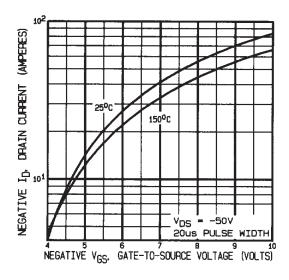



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

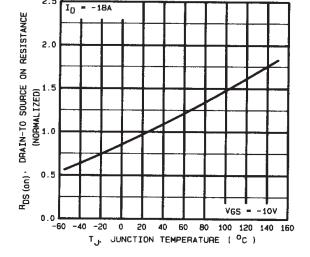
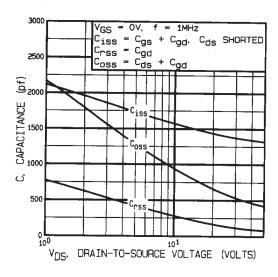
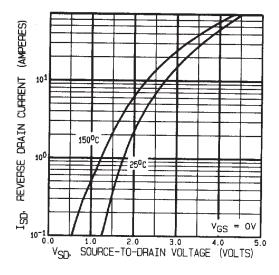




Fig 3. Typical Transfer Characteristics

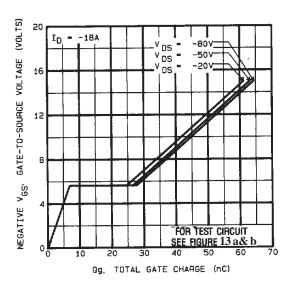

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

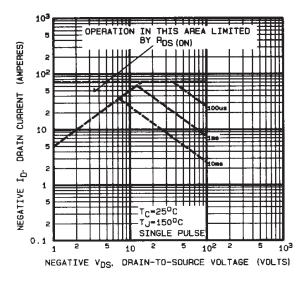
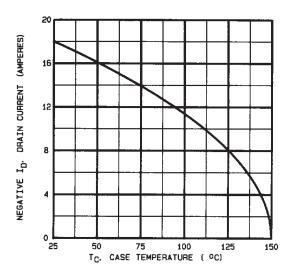



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

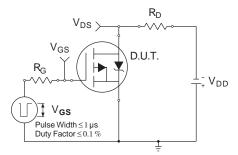


Fig 10a. Switching Time Test Circuit

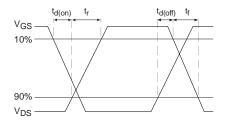


Fig 10b. Switching Time Waveforms

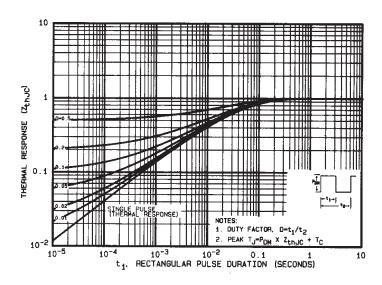


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

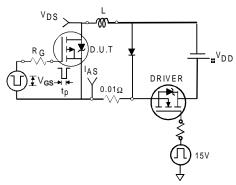


Fig 12a. Unclamped Inductive Test Circuit

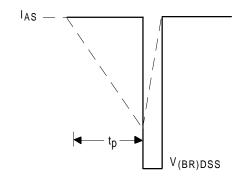
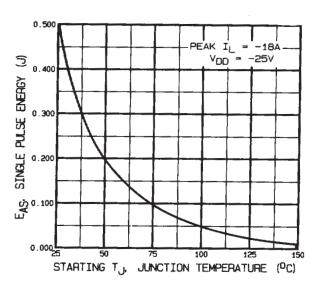



Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

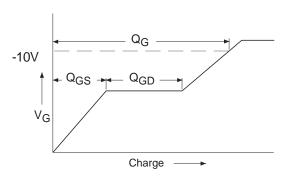


Fig 13a. Basic Gate Charge Waveform

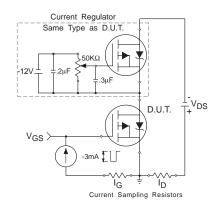
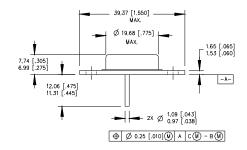
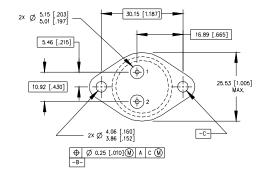


Fig 13b. Gate Charge Test Circuit



Foot Notes:


- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\odot}$ V_{DD} = -25V, starting T_J = 25°C, Peak I_L = -18A, V_GS = -10V

- $\label{eq:sphere:sphere:eq:sphere$
- ④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

Case Outline and Dimensions —TO-204AA (Modified TO-3)

PIN ASSIGNMENTS HEXFET 1 - SOURCE 2 - GATE 3 - DRAIN (CASE)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION : INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204-AA.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 09/03