

RoHS

HALOGEN FREE

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	400)			
R _{DS(on)} (Ω)	V _{GS} = 10 V	1.8			
Q _g (Max.) (nC)	20				
Q _{gs} (nC)	3.3				
Q _{gd} (nC)	11	11			
Configuration	Sing	Single			

N-Channel MOSFET

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Surface Mount (IRFR320,SiHFR320)
- Straight Lead (IRFU320, SiHFU320)
- Available in Tape and Reel
- Fast Switching
- · Ease of Paralleling
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The DPAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU, SiHFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface mount applications.

ORDERING INFORMATION							
Package	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	IPAK (TO-251)		
Lead (Pb)-free and Halogen-free	SiHFR320-GE3	SiHFR320TRL-GE3a	SiHFR320TR-GE3a	-	SiHFU320-GE3		
Lead (Pb)-free	IRFR320PbF	IRFR320TRLPbFa	IRFR320TRPbF ^a	IRFR320TRRPbFa	IRFU320PbF		
Lead (FD)-liee	SiHFR320-E3	SiHFR320TL-E3 ^a	SiHFR320T-E3a	SiHFR320TR-E3 ^a	SiHFU320-E3		
SnPb	IRFR320	IRFR320TRLa	IRFR320TR ^a	IRFR320TRRa	IRFU320		
SIIPD	SiHFR320	SiHFR320TL ^a	SiHFR320Ta	SiHFR320TR ^a	SiHFU320		

Note

a. See device orientation.

ABSOLUTE MAXIMUM RATINGS T_{C} :	= 25 °C, unle	ess otherwis	e noted			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V_{DS}	400	W	
Gate-Source Voltage			V_{GS}	± 20	V	
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C	- I _D	3.1		
	VGS at 10 V	T _C = 100 °C		2.0	Α	
Pulsed Drain Current ^a			I _{DM} 12			
Linear Derating Factor				0.33	W/°C	
Linear Derating Factor (PCB Mount)e				0.020	VV/ C	
Single Pulse Avalanche Energy ^b			E _{AS}	160	mJ	
Repetitive Avalanche Current ^a			I _{AR}	3.1	А	
Repetitive Avalanche Energy ^a			E _{AR}	4.2	mJ	
Maximum Power Dissipation	T _C =	25 °C	ם	42	w	
Maximum Power Dissipation (PCB Mount)e	T _A = 25 °C		P_{D}	2.5	T vv	
Peak Diode Recovery dV/dt ^c			dV/dt	4.0	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stq} - 55 to + 150		°C	
Soldering Recommendations (Peak Temperature)	for 10 s		-	260 ^d	7	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD}=50$ V, starting $T_J=25$ °C, L=29 mH, $R_g=25$ Ω , $I_{AS}=3.1$ A (see fig. 12). c. $I_{SD}\leq 3.1$ A, $dI/dt\leq 65$ A/ μ s, $V_{DD}\leq V_{DS}$, $T_J\leq 150$ °C. d. 1.6 mm from case.

- When mounted on 1" square PCB (FR-4 or G-10 material).

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRFR320, IRFU320, SiHFR320, SiHFU320

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R _{thJA}	-	-	110		
Maximum Junction-to-Ambient (PCB Mount) ^a	R _{thJA}	-	-	50	°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	-	3.0		

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

Static	SPECIFICATIONS T _J = 25 °C, unless otherwise noted									
Drain-Source Breakdown Voltage VDS VGS = 0 V, ID = 250 μA 400 - - V VDS Temperature Coefficient ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.51 - V°C Gate-Source Threshold Voltage VGS(th) VDS = VGS, ID = 250 μA 2.0 - 4.0 V VCS CASCOURCE CHROSPOOL V - - ± 100 NA VDS = 20 V VDS = ± 20 V VDS =	PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT		
Vos Temperature Coefficient	Static				T	T	T	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _{DS}		•	400	-	-	V		
	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	ce to 25 °C, I _D = 1 mA	-	0.51	-	V/°C		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Threshold Voltage	$V_{GS(th)}$	V _{DS} =	= V _{GS} , I _D = 250 μA	2.0	-	4.0	V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 \text{ V}$	-	-	± 100	nA		
Drain-Source On-State Resistance R _{DS(on)} V _{DS} = 320 V, V _{GS} = 0 V, T _D = 125 °C - - 250	Zoro Gato Voltago Drain Current		V _{DS} =	$= 400 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	25	μΑ		
Forward Transconductance g _{1s} V _{DS} = 50 V, I _D = 1.9 A 1.7 - - S	Zero date voltage Drain Gurrent	DSS	$V_{DS} = 320 \text{ V}$	$V_{\rm S} = 0 \text{ V}, T_{\rm J} = 125 ^{\circ}\text{C}$	-	-	250			
Input Capacitance	Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.9 A ^b	-	-	1.8	Ω		
Total Gate Charge Css Crss C	Forward Transconductance	9 _{fs}	V _{DS}	= 50 V, I _D = 1.9 A	1.7	-	-	S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic		•							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}		Voc = 0.V	-	350	-			
Total Gate Charge Q_g	Output Capacitance	Coss		V _{DS} = - 25 V,	-	120	-	pF		
Gate-Source Charge Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 3.3 \text{ A}, V_{DS} = 320 \text{ V}, see fig. 6 and 13b} - - 3.3 nC Gate-Drain Charge Q_{gd} - - 11 - - 11 - - - 11 - - - 11 - - - 11 - - - - 11 - - - - 11 - $	Reverse Transfer Capacitance	C _{rss}	f = 1	.0 MHz, see fig. 5	-	47	-			
Gate-Drain Charge Q_{gd} Q	Total Gate Charge	Qg			-	-	20			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q_{gs}	V _{GS} = 10 V		-	-	3.3	nC		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge				-	-	11			
Turn-Off Delay Time $t_{d(off)}$ $R_g = 18 \Omega$, $R_D = 56 \Omega$, see fig. 10^b $ 30$ $-$ Internal Drain Inductance t_f $ 13$ $-$ Internal Source Inductance t_S $ -$	Turn-On Delay Time				-	10	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r			-	14	-	ns		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}			-	30	-			
Internal Source Inductance L_S $6 \text{ mm } (0.25") \text{ from package and center of die contact}$ $ 7.5$ $-$ Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $MOSFET$ symbol showing the integral reverse $p - n$ junction diode Body Diode Voltage V_{SD} $T_J = 25 ^{\circ}C$, $I_S = 3.1 \text{A}$, $V_{GS} = 0 \text{V}^b$ $ 1.6 \text{V}$ $ -$	Fall Time	t _f			-	13	-			
Internal Source Inductance Ls package and center of die contact $-$ 7.5 $-$ Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse p - n junction diode $-$ 12 Body Diode Voltage VsD $-$ 1.6 V Body Diode Reverse Recovery Time $-$ 1.7 $-$ 1.6 V T _J = 25 °C, I _F = 3.3 A, dl/dt = 100 A/ μ sb $-$ 1.4 3.0 μ C	Internal Drain Inductance	L _D	6 mm (0.25") from package and center of		-	4.5	-			
Continuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode I_{SM} Body Diode Voltage I_{SM} I	Internal Source Inductance	L _S			-	7.5	-	1 NH		
Pulsed Diode Forward Currenta I_{SM} showing the integral reverse $p-n$ junction diode I_{SM} $I_$	Drain-Source Body Diode Characteristic	cs						•		
Pulsed Diode Forward Currenta I_{SM} integral reverse $p-n$ junction diode -12 -12 Body Diode Voltage V_{SD} $T_J = 25$ °C, $I_S = 3.1$ A, $V_{GS} = 0$ Vb -16 V_{SD} Body Diode Reverse Recovery Time t_{rr} $T_J = 25$ °C, $I_F = 3.3$ A, $dI/dt = 100$ A/ μ sb -16 I_{SD} $I_$	Continuous Source-Drain Diode Current	I _S	showing the integral reverse		-	-	3.1	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pulsed Diode Forward Current ^a	I _{SM}			-	-	12			
Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25$ °C, $I_F = 3.3$ A, $dI/dt = 100$ A/ μ sb $-$ 1.4 3.0 μ C	Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 3.1 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$		-	-	1.6	V		
Body Diode Reverse Recovery Charge Q _{rr} - 1.4 3.0 μC	Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = 3.3 A, dI/dt = 100 A/μs ^b		-	270	600	ns		
	Body Diode Reverse Recovery Charge	Q _{rr}			-	1.4	3.0	μC		
	Forward Turn-On Time		Intrinsic tu	rn-on is dominated by L _S and L _D)						

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

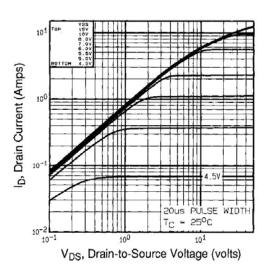


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

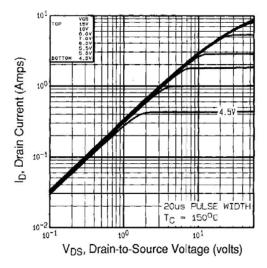


Fig. 2 - Typical Output Characteristics, T_C = 150 $^{\circ}C$

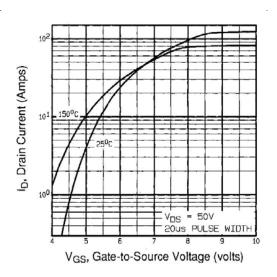


Fig. 3 - Typical Transfer Characteristics

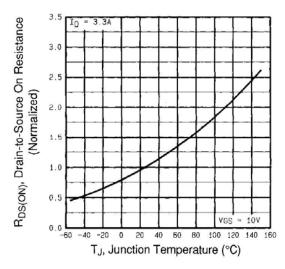


Fig. 4 - Normalized On-Resistance vs. Temperature

IRFR320, IRFU320, SiHFR320, SiHFU320

Vishay Siliconix

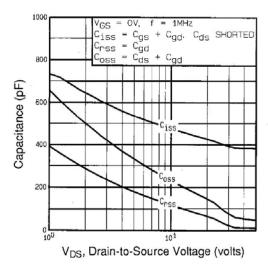


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

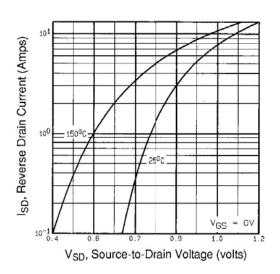


Fig. 7 - Typical Source-Drain Diode Forward Voltage

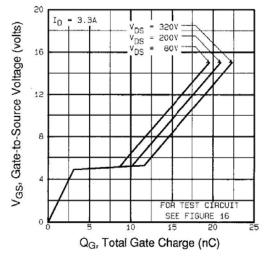


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

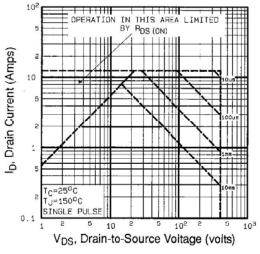


Fig. 8 - Maximum Safe Operating Area

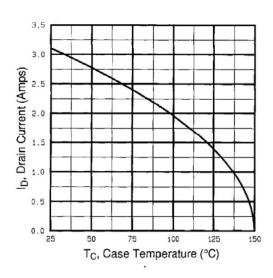


Fig. 9 - Maximum Drain Current vs. Case Temperature

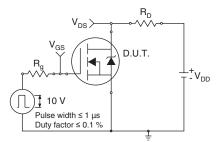


Fig. 10a - Switching Time Test Circuit

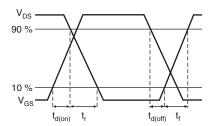


Fig. 10b - Switching Time Waveforms

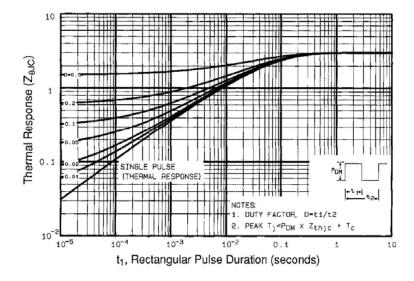


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

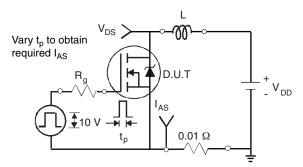


Fig. 12a - Unclamped Inductive Test Circuit

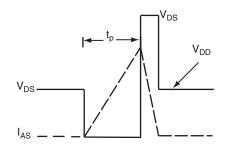


Fig. 12b - Unclamped Inductive Waveforms

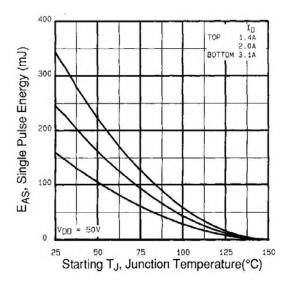


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

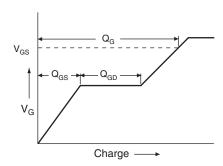


Fig. 13a - Basic Gate Charge Waveform

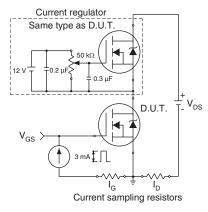
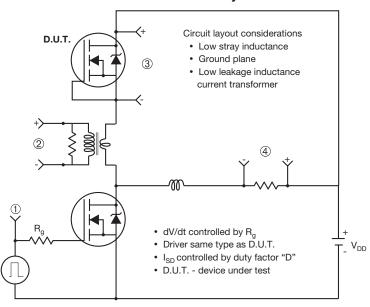



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

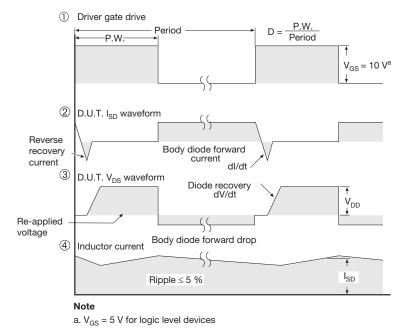


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91273.

Document Number: 91273 S10-1135-Rev. C, 10-May-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1