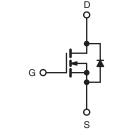

Vishay Siliconix


BoHS

COMPLIANT

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	200				
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.18			
Q _g (Max.) (nC)	70				
Q _{gs} (nC)	13				
Q _{gd} (nC)	39				
Configuration	Single				

N-Channel MOSFET

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- · Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF640PbF
	SiHF640-E3
SnPb	IRF640
	SiHF640

ABSOLUTE MAXIMUM RATINGS (T C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	200	N	
Gate-Source Voltage			V _{GS}	± 20	- V	
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C	- I _D	18		
		T _C = 100 °C		11	А	
Pulsed Drain Current ^a			I _{DM}	72		
Linear Derating Factor				1.0	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	580	mJ	
Repetitive Avalanche Current ^a			I _{AR}	18	A	
Repetitive Avalanche Energy ^a			E _{AR} 13		mJ	
Maximum Power Dissipation	T _C =	25 °C	P _D 125		W	
Peak Diode Recovery dV/dt ^c			dV/dt	5.0	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150		
Soldering Recommendations (Peak Temperature)	for 10 s			300 ^d	- °C	
Mounting Torque	6-32 or M3 screw			10	lbf ⋅ in	
				1.1	N · m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \text{ °C}$, L = 2.7 mH, $R_g = 25 \Omega$, $I_{AS} = 18 \text{ A}$ (see fig. 12). c. $I_{SD} \le 18 \text{ A}$, dI/dt $\le 150 \text{ A/}\mu\text{s}$, $V_{DD} \le V_{DS}$, $T_J \le 150 \text{ °C}$.

d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 91036 S11-0509-Rev. B, 21-Mar-11 www.vishay.com

Vishay Siliconix

Maximum Junction-to-Ambient $R_{m,jA}$ - 62 Case-to-Sink, Flat, Greased Surface $R_{p,CS}$ 0.50 - SPECIFICATIONS ($T_J = 25$ °C, unless otherwise noted) TST Maximum Junction-to-Case (Drain) Resc 0.50 - 1.0 SPECIFICATIONS ($T_J = 25$ °C, unless otherwise noted) Test construction to the set of the	THERMAL RESISTANCE RATI	NGS							
Case-to-Sink, Flat, Greased Surface P_{HCS} 0.50 \cdot $^{\circ}$ C/W Maximum Junction-to-Case (Drain) R_{HJC} $ 1.0$ $^{\circ}$ C/W SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) TEST CONDITIONS Min. TYP. MAX. UN Static Drain-Source Breakdown Voltage V_{DS} $V_{CS} = 0$ V, $I_0 = 250 \ \mu A$ 2.0 $ V_{VS}$ Gate-Source Intreshold Voltage V_{DS} $V_{CS} = 420 \ V$ $ 2.0$ $ 4.0$ V_{VS} Gate-Source Leakage I.ass $V_{CS} = 200 \ V$, $V_{SS} = 0 \ V$, $V_{SS} = 0 \ V$ $ 2.5 \ \mu$ V_{VS} Zaro Gate Voltage Drain Current I.bss $V_{OS} = 100 \ V$, $V_{SS} = 0 \ V$, $V_{SS} = 0 \ V$, $V_{SS} = 10 \ V$ $I_0 = 11 \ A^b$ $ 0.18 \ \Omega$ Drain-Source On-State Resistance $P_{DS(er)}$ $V_{OS} = 50 \ V$, $V_{SS} = 10 \ V$ $I_0 = 11 \ A^b$ $ 0.13 \ \Omega$ Input Capacitance C_{Ses} $V_{CS} = 10 \ V$ $I_0 = 18 \ A, V_{DS} = 160 \ V, I_0 = 18 \ A, V_{DS} = 160 \ V, I_0 = 18 \ A, V_{DS} = 160 \ V, I_0 = 18 \ A, V_{DS} = 100 \ V, $	PARAMETER	SYMBOL	TYP.		MAX.		UNIT		
Maximum Junction-to-Case (Drain) Revice - 1.0 SPECIFICATIONS ($T_j = 25$ °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UN SPECIFICATIONS ($T_j = 25$ °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UN Gale-Source Breakdown Voltage Vogs TJ Reference to 25 °C, 15 = 1 mA 2.0 - 4.0 V////////////////////////////////////	Maximum Junction-to-Ambient	R _{thJA}							
$\begin{aligned} \begin{array}{c c c c c c c c c c c c c c c c c c c $	Case-to-Sink, Flat, Greased Surface	R _{thCS}					°C/W		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}	- 1.0						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		•	·						
Static VDS	SPECIFICATIONS ($T_J = 25 \text{ °C}$, u	Inless otherw	ise noted)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TEST	CONDITI	ONS	MIN.	TYP.	MAX.	UNIT
$\begin{split} & V_{DS} \mbox{ Temperature Coefficient} & \Delta V_{DS}/J_{J} & Reference to 25 \ ^{\circ}C, \ I_{D} = 1 \ mA & - & 0.29 & - & V/2 \\ & Gate-Source Threshold Voltage & V_{GS(Ph)} & V_{DS} = V_{GS, \ I_{D}} = 250 \ \muA & 2.0 & - & 4.0 & V \\ & Gate-Source Leakage & I_{GSS} & V_{GS} = 2 \ 20 \ V, \ V_{GS} = 0 \ V & - & - & 21 \ 100 \ mV \\ & V_{DS} = 200 \ V, \ V_{GS} = 0 \ V & - & - & 250 \ \muV \\ & V_{DS} = 100 \ V, \ V_{GS} = 0 \ V & - & - & 250 \ \muV \\ & V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ V_{GS} = 0 \ V & - & - & 250 \ \muV \\ & V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ V_{GS}$	Static		•						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0$	V, I _D = 2	50 µA	200	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference t	o 25 °C,	I _D = 1 mA	-	0.29	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} = V	_{GS} , I _D = 2	50 µA	2.0	-	4.0	V
Zero Gate Voltage Drain Current IDSS VDS = 160 V, VGS = 0 V, TJ = 125 °C - - 250 μ Drain-Source On-State Resistance RDS(on) VGS = 10 V Ib = 11 Ab - - 0.18 0.0 Forward Transconductance gfs VDS = 50 V, Ib = 11 Ab 6.7 - - 0.18 0.0 Dynamic Input Capacitance Ciss VDS = 50 V, Ib = 11 Ab 6.7 - - 0.18 0.0 Output Capacitance Coss VDS = 50 V, Ib = 11 Ab 6.7 - - 0.1300 - - 1300 - - 1300 - - 1300 - - 1300 - - 1300 - - 1300 - - 130 - - 140 - - 130 - - 141 - - 141 - - 141 - - 141 - - 141 - - 141 - -	Gate-Source Leakage	I _{GSS}	V _G	s = ± 20 '	V	-	-	± 100	nA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-	25	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate voltage Drain Current	IDSS			T _J = 125 °C	-	-	250	μA
DynamicInput CapacitanceCiss $V_{GS} = 0.V$, $V_{DS} = 25.V$, f = 1.0 MHz, see fig. 5-1300-Output CapacitanceCross $rage = 0.V$, $V_{DS} = 25.V$, f = 1.0 MHz, see fig. 5430-plReverse Transfer CapacitanceCross $rage = 0.V$, $V_{DS} = 25.V$, f = 1.0 MHz, see fig. 51300Total Gate Charge Q_{gg} Q_{gg} $V_{GS} = 10.V$ $l_{b} = 18.A, V_{DS} = 160.V$, see fig. 6 and 13b70Gate-Drain Charge Q_{gd} $V_{GS} = 10.V$ $l_{b} = 18.A, V_{DS} = 160.V$, see fig. 6 and 13b39Turn-On Delay Time $t_{d(onf)}$ r_{r} $V_{DD} = 100.V, I_{D} = 18.A, See fig. 10^{b}$ 14-Turn-Off Delay Time $t_{d(off)}$ r_{r} r_{r} r_{r} -4.5-Fall Time t_{r} r_{r} r_{r} -4.5Internal Drain Inductance L_{D} Between lead, 6 mm (0.25") from package and center of die contact18Pulsed Diode Forward Current* I_{SM} MOSFET symbol showing the integral reverse $p - n$ junction diode1818Pulsed Diode Forward Current* I_{SM} $T_{J} = 25 °C$, $I_{F} = 18.A, dI/dt = 100.A/\mus^{b}$ 2.0VBody Diode Reverse Recovery Time t_{rr} $T_{J} = 25 °C$, $I_{F} = 18.A, dI/dt = 100.A/\mus^{b}$ <td>Drain-Source On-State Resistance</td> <td>R_{DS(on)}</td> <td>V_{GS} = 10 V</td> <td>١</td> <td>_D = 11 A^b</td> <td>-</td> <td>-</td> <td>0.18</td> <td>Ω</td>	Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	١	_D = 11 A ^b	-	-	0.18	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance	9 _{fs}	V _{DS} = 5	0 V, I _D =	11 A ^b	6.7	-	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic							I	1
Output Capacitance C_{oss} $V_{DS} = 25 \text{ V}, \\ f = 1.0 \text{ MHz}, see fig. 5$ $ 430$ $-$ plReverse Transfer Capacitance C_{rss} $f = 1.0 \text{ MHz}, see fig. 5$ $ 430$ $-$ plReverse Transfer Capacitance C_{rss} $V_{DS} = 10 \text{ V}$ $I_D = 18 \text{ A}, V_{DS} = 160 \text{ V}, see fig. 6 and 13^{b}$ $ 70$ Gate-Source Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 18 \text{ A}, V_{DS} = 160 \text{ V}, see fig. 6 and 13^{b}$ $ 39$ Turn-On Delay Time $t_{d(on)}$ $V_{DD} = 100 \text{ V}, I_D = 18 \text{ A}, R_g = 9.1 \Omega, R_D = 5.4 \Omega, see fig. 10^{b}$ $ 4.5$ $-$ Fall Time t_f $V_{DD} = 100 \text{ V}, I_D = 18 \text{ A}, See fig. 10^{b}$ $ 4.5$ $ -$ Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact $ 7.5$ $ -$ Drain-Source Body Diode Characteristics V_{SD} $T_J = 25 ^{\circ}C$, $I_S = 18 \text{ A}, V_{GS} = 0 \text{ Vb}$ $ -$ Body Diode Forward Current* I_S $MOSFET$ symbol showing the integral reverse p - n junction diode $ -$ </td <td>Input Capacitance</td> <td>C_{iss}</td> <td colspan="2" rowspan="3">$V_{DS} = 25 V$,</td> <td>-</td> <td>1300</td> <td>-</td> <td rowspan="3">pF</td>	Input Capacitance	C _{iss}	$V_{DS} = 25 V$,		-	1300	-	pF	
Reverse Iranster Capacitance C_{rss} -130-Total Gate Charge Q_g Gate-Source Charge Q_{gs} Gate-Drain Charge Q_{gd} Gate-Drain Charge Q_{gd} Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_r Internal Drain Inductance L_D Between lead, 6 mm (0.25°) from package and center of die contactInternal Source Inductance L_S MOSFET symbol showing the integral reverse $p - n$ junction diodePulsed Diode Forward Currenta I_{SM} Mody Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Turn-Store R	Output Capacitance	C _{oss}			-	430	-		
$ \begin{array}{c c c c c c c } \hline Total Gate Charge & Q_g & \\ \hline Gate-Source Charge & Q_{gd} & \\ \hline Gate-Drain Charge & Q_{gd} & \\ \hline U_{GS} = 10 \ V & \\ \hline U_{SS} = 10 \ V & \\ \hline See fig. 6 and 13^b & \\ \hline I_{D} = 18 \ A, \ V_{DS} = 160 \ V, \\ \hline See fig. 6 and 13^b & \\ \hline I_{O} & - & 13 & \\ \hline I_{O} & - & 39 & \\ \hline I_{O} & - & 39 & \\ \hline I_{O} & - & 39 & \\ \hline I_{O} & - & - & 39 & \\ \hline I_{O} & - & - & 39 & \\ \hline I_{O} & - & - & 39 & \\ \hline I_{O} & - & - & 39 & \\ \hline I_{O} & - & - & 39 & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 14 & - & \\ \hline I_{O} & - & - & 4.5 & - & \\ \hline I_{O} & - & - & 36 & - & \\ \hline I_{O} & - & - & 36 & - & \\ \hline I_{O} & - & - & 36 & - & \\ \hline I_{O} & - & - & 36 & - & \\ \hline I_{O} & - & - & - & - & 18 \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & \\ \hline I_{O} & I_{O} & I_{O} $	Reverse Transfer Capacitance	C _{rss}			-	130	-		
Gate-Source Charge d_{gs} $V_{GS} = 10$ 2 see fig. 6 and 13b 2 2 2 1 1 1 2 2 1 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 <td>Total Gate Charge</td> <td>Qg</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>70</td> <td></td>	Total Gate Charge	Qg				-	-	70	
Gate-Drain Charge Q_{gd} 39Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_r Fall Time t_f Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-Internal Source Inductance L_S MOSFET symbol showing the integral reverse $p - n$ junction diode-Integral Proverse Polsed Diode Forward CurrentaIs N_{SD} Moster Serverse Recovery Time t_{rr} $T_J = 25 °C, I_S = 18 A, V_{GS} = 0 V^b$ - $T_J = 25 °C, I_F = 18 A, dl/dt = 100 A/\mus^b$ - 300 610 ne 300 610 ne 300 610 ne 300 7.1 μC 300 610 ne 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< td=""><td>Gate-Source Charge</td><td>Q_{gs}</td><td colspan="2"></td><td></td><td>-</td><td>-</td><td>13</td><td>nC</td></td<>	Gate-Source Charge	Q _{gs}				-	-	13	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}		3001	ig. 6 and 16	-	-	39	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}				-	14	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time		$V_{DD} = 100 \text{ V}, \text{ I}_D = 18 \text{ A},$ $\text{R}_g = 9.1 \ \Omega, \text{ R}_D = 5.4 \ \Omega, \text{ see fig. } 10^{\text{b}}$		18 A.	-	51	-	1
Internal Drain Inductance L_D Between lead, 6 mm (0.25") from package and center of die contact-4.5-nHInternal Source Inductance L_S L_S MOSFET symbol showing the integral reverse $p - n$ junction diode-7.5-18Pulsed Diode Forward Currenta I_SM MOSFET symbol showing the integral reverse $p - n$ junction diode18ABody Diode Voltage V_{SD} $T_J = 25 ^\circ C$, $I_S = 18 A$, $V_{GS} = 0 V^b$ 2.0VBody Diode Reverse Recovery Time t_{rr} $T_J = 25 ^\circ C$, $I_F = 18 A$, dl/dt = 100 A/µsb-3.47.1µd	Turn-Off Delay Time	t _{d(off)}			-	45	-	ns	
Internal Drain Hubblan HubblanLD6 mm (0.25") from package and center of die contact-4.3Internal Source InductanceLS6 mm (0.25") from package and center of die contact-7.5Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode18APulsed Diode Forward CurrentaIsMOSFET symbol showing the integral reverse p - n junction diode72ABody Diode VoltageVSDTJ = 25 °C, IS = 18 A, VGS = 0 Vb2.0VBody Diode Reverse Recovery TimetrrTJ = 25 °C, IF = 18 A, dI/dt = 100 A/µsb-3.47.1µ0	Fall Time	t _f			-	36	-		
Internal Source InductanceLSPackage and center of die contactImage: Content of showing the integral reverse p - n junction diode-7.5-Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentISMOSFET symbol showing the integral reverse p - n junction diode18APulsed Diode Forward CurrentaISMT_J = 25 °C, I_S = 18 A, V_{GS} = 0 V^b72ABody Diode VoltageV_{SD}T_J = 25 °C, I_S = 18 A, V_{GS} = 0 V^b2.0VBody Diode Reverse Recovery Timetrr T_J = 25 °C, I_F = 18 A, dl/dt = 100 A/µs^b-3.00610ns-3.47.1µ014	Internal Drain Inductance	L _D	6 mm (0.25") from a center of		-	4.5	-	nH	
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode18APulsed Diode Forward CurrentaIsmIsmTJ = 25 °C, Is = 18 A, VGS = 0 Vb72VBody Diode VoltageVspTJ = 25 °C, Is = 18 A, VGS = 0 Vb2.0VBody Diode Reverse Recovery TimetrrTJ = 25 °C, Is = 18 A, dI/dt = 100 A/µsb-300610nsBody Diode Reverse Recovery ChargeQrr3.47.1µ0	Internal Source Inductance	L _S			-	7.5	-		
Continuous Source-Drain Diode CurrentIs is showing the integral reverse p - n junction diode18APulsed Diode Forward CurrentaIsmIsmp - n junction diode72ABody Diode VoltageVspT_J = 25 °C, Is = 18 A, VGs = 0 Vb2.0VBody Diode Reverse Recovery TimetrrT_J = 25 °C, Is = 18 A, dl/dt = 100 A/µsb-300610nsBody Diode Reverse Recovery ChargeQrr3.47.1µ0	Drain-Source Body Diode Characteristic	cs							
Pulsed Diode Forward CurrentaI I SMIntegral reverse p - n junction diode72Body Diode VoltageV SDT T 225 °C, I S = 18 A, V GS = 0 Vb72Body Diode Reverse Recovery Timet rrT T J = 25 °C, I F = 18 A, dI/dt = 100 A/µsb2.0VBody Diode Reverse Recovery ChargeQ rrT T J = 25 °C, I F = 18 A, dI/dt = 100 A/µsb-3.00610ns	Continuous Source-Drain Diode Current	۱ _S	showing the		-	-	18	A	
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 18 \ A$, $dI/dt = 100 \ A/\mu s^b$ - 300 610 nsBody Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 18 \ A$, $dI/dt = 100 \ A/\mu s^b$ - 3.4 7.1 μC	Pulsed Diode Forward Current ^a	I _{SM}				-	-		72
$T_{J} = 25 \text{ °C}, I_{F} = 18 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}^{b}$ Body Diode Reverse Recovery Charge Q_{rr} $T_{J} = 25 \text{ °C}, I_{F} = 18 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}^{b}$ $- 3.4 \text{ 7.1} \mu\text{C}$	Body Diode Voltage	V _{SD}	$T_{J} = 25 \text{ °C}, I_{S} = 18 \text{ A}, V_{GS} = 0 \text{ V}^{b}$			-	-	2.0	V
Body Diode Reverse Recovery Charge Q _{rr} - 3.4 7.1 µ0	Body Diode Reverse Recovery Time	t _{rr}	- $T_J = 25 \text{ °C}, I_F = 18 \text{ A}, dI/dt = 100 \text{ A}/\mu\text{s}^{b}$		-	300	610	ns	
Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)	Body Diode Reverse Recovery Charge	Q _{rr}			-	3.4	7.1	μC	
	Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn			-on is dor	minated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

www.vishay.com 2

Document Number: 91036 S11-0509-Rev. B, 21-Mar-11

Vishay Siliconix

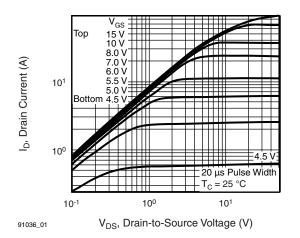


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

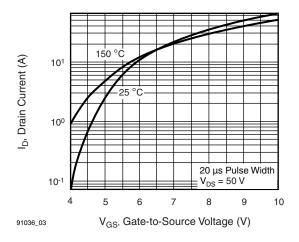


Fig. 3 - Typical Transfer Characteristics

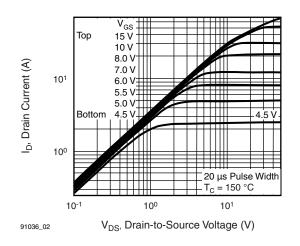


Fig. 2 - Typical Output Characteristics, T_C = 150 $^\circ C$

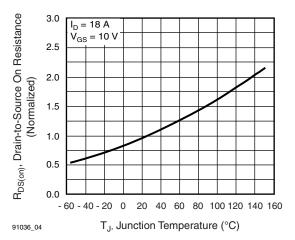


Fig. 4 - Normalized On-Resistance vs. Temperature

www.vishay.com

Vishay Siliconix

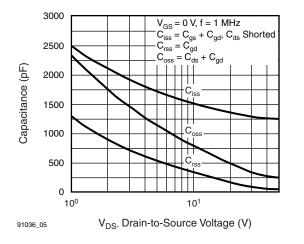


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

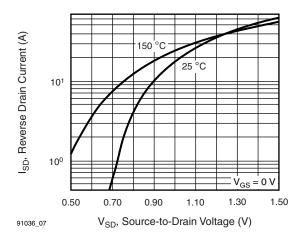


Fig. 7 - Typical Source-Drain Diode Forward Voltage

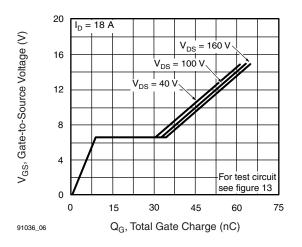


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 8 - Maximum Safe Operating Area

Document Number: 91036 S11-0509-Rev. B, 21-Mar-11

Vishay Siliconix

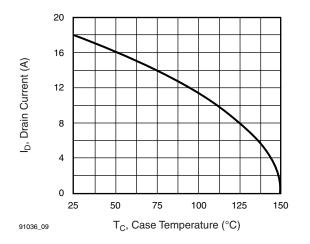


Fig. 9 - Maximum Drain Current vs. Case Temperature

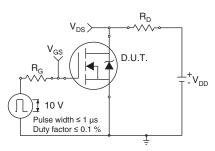


Fig. 10a - Switching Time Test Circuit

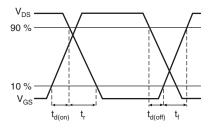


Fig. 10b - Switching Time Waveforms

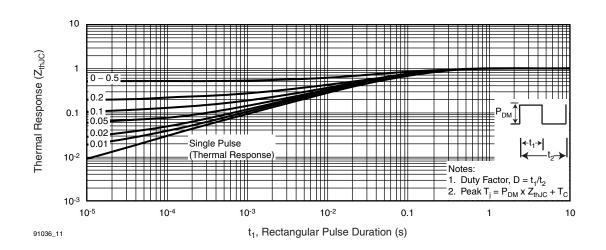


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

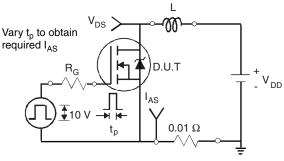


Fig. 12a - Unclamped Inductive Test Circuit

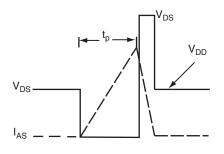


Fig. 12b - Unclamped Inductive Waveforms

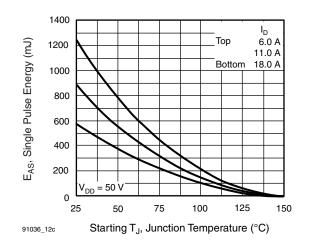


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

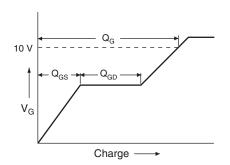
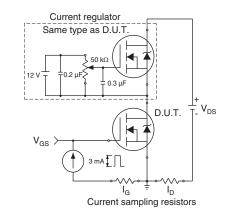
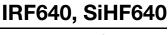
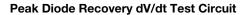
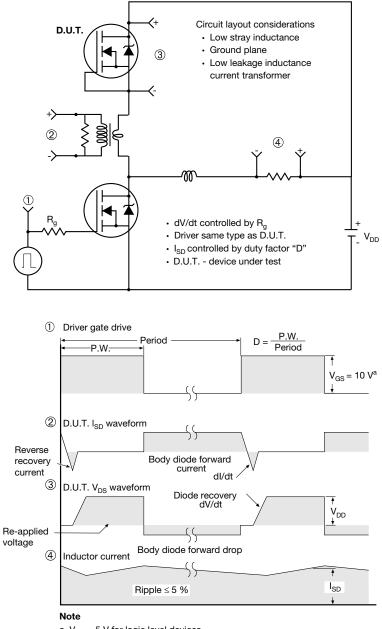


Fig. 13a - Basic Gate Charge Waveform


Fig. 13b - Gate Charge Test Circuit


www.vishay.com 6 Document Number: 91036 S11-0509-Rev. B, 21-Mar-11

Vishay Siliconix

a. V_{GS} = 5 V for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91036.

Document Number: 91036 S11-0509-Rev. B, 21-Mar-11 www.vishay.com

⁷

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.