
2N4393CSM

MECHANICAL DATA Dimensions in mm (inches) HERMETICAL CERAMIC SURFACE FOR HIGH RELIABIL

SMALL SIGNAL N-CHANNEL J-FET IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

FEATURES

- HERMETIC CERAMIC SURFACE MOUNT PACKAGE (SOT23 COMPATIBLE)
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS

SOT23 CERAMIC (LCC1 PACKAGE)

Underside View

PAD 1 – Source

PAD 2 – Drain

of

APPLICATIONS:

Hermetically sealed surface mount version of the popular 2N4393 for high reliability / space applications requiring small size and low weight devices.

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25°C unless otherwise stated)

PAD 3 - Gate

	(and	,		
V _{GD}	Gate – Drain Voltage	-35V		
V _{GS}	Gate – Source Voltage	–35V		
I _G	Gate Current	50mA		
P _D	Power Dissipation	350mW		
	Derate	2.8mW / °C		
Тj	Operating Junction Temperature Range	–55 to 175°C		
T _{stg}	Storage Temperature Range	–55 to 175°C		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

2N4393CSM

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC CHARACTERISTICS	•					1
V _{(BR)GSS}	Gate – Source Breakdown Voltage	$V_{DS} = 0V$	$I_G = -1\mu A$	-35	-55		V
V _{GSS(off)}	Gate – Source Cut–off Voltage	$V_{DS} = 20V$	I _D = 1nA	-0.5		-3	V
I _{DSS*}	Saturation Current	$V_{DS} = 20V$	$V_{GS} = 0V$	5		30	mA
I _{GSS}	Gate Reverse Current	$V_{GS} = -20V$			-5	-100	pА
		$V_{DS} = 0V$	T _{amb} = 125°C		-3	-200	nA
I _{D(off)}	Drain Cut–off Current	$V_{DS} = 20V$	$V_{GS} = -5V$		5	100	рА
		V _{DS} = 10V	$V_{GS} = -5V$		3	200	nA
			T _{amb} = 125°C				
V _{DS(on)}	Drain – Source On Voltage	$V_{GS} = 0V$	I _D = 3mA		0.25	0.4	V
R _{DS(on)}	Drain – Source On Resistance	$V_{GS} = 0V$	I _D = 1mA			100	Ω
	DYNAMIC CHARACTERISTICS	•	•			1	
R _{DS(on)}	Drain – Source On Resistance	$V_{GS} = 0V$	I _D = 0mA			100	Ω
		f = 1kHz					
C _{ISS}	Common – Source Input Capacitance	V _{DS} = 20V	$V_{GS} = 0V$		13	16	pF
		f = 1MHz					
C _{RSS}	Common – Source Reverse Transfer	$V_{DS} = 0V$	$V_{GS} = -5V$		4	5	pF
	Capacitance	f = 1MHz					
ē _n	Equivalent Input Noise Voltage	V _{DG} = 10V	I _D = 10mA		3.0		nV
		f = 1kHz					√Hz
t _r	Rise Time					5	
t _{d(on)}	Turn-on Time	V _{DD} = 10V	I _D = 3mA			15	nS
t _f	Fall Time	V _{GS} = 0V	V _{GS(off)} = 5V			30	
t _{d(off)}	Turn-off Time					50	

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.