

Vishay High Power Products

"Full Bridge" IGBT MTP (Warp Speed IGBT), 50 A

MTP

PRODUCT SUMMARY				
V _{CES}	600 V			
I _C DC	69 A			
V _{CE(on)}	2.22 V			

FEATURES

- Generation 4 warp speed IGBT technology
- HEXFRED[®] antiparallel diodes with ultrasoft reverse recovery

- Very low conduction and switching losses
- Optional SMT thermistor
- Al₂O₃ DBC
- Very low stray inductance design for high speed operation
- Speed 8 kHz to 60 kHz > 20 kHz hard switching, > 200 kHz resonant mode
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

BENEFITS

- Optimized for welding, UPS and SMPS applications
- Low EMI, requires less snubbing
- Direct mounting to heatsink
- PCB solderable terminals
- Very low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	69		
	I _C	T _C = 80 °C	46		
Pulsed collector current	I _{CM}		200	A	
Peak switching current	I _{LM}		200	A	
Diode continuous forward current	I _F	T _C = 100 °C	25		
Peak diode forward current	I _{FM}		200		
Gate to emitter voltage	V_{GE}		± 20	V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 minute	2500	V	
Maximum power dissipation	В	T _C = 25 °C	195	W	
per single IGBT	P _D	T _C = 100 °C	78	VV	

Document Number: 94539 Revision: 01-Mar-09

25MT060WFAPbF

Vishay High Power Products

"Full Bridge" IGBT MTP (Warp Speed IGBT), 50 A

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	600	-	-	V
Temperature coefficient of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_{J}$	V_{GE} = 0 V, I_{C} = 4 mA (25 °C to 125 °C)	ı	+ 0.6	-	V/°C
	V _{CE(on)}	$V_{GE} = 15 \text{ V}, I_{C} = 25 \text{ A}$	ı	2.22	3.14	V
Collector to amitter caturation voltage		$V_{GE} = 15 \text{ V}, I_{C} = 50 \text{ A}$	ı	2.43	3.25	
Collector to emitter saturation voltage		$V_{GE} = 15 \text{ V}, I_{C} = 25 \text{ A}, T_{J} = 150 \text{ °C}$	ı	1.65	1.93	
		V_{GE} = 15 V, I_C = 50 A, T_J = 150 °C	ı	2.08	2.45	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3	-	6	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_{C} = 250 \mu\text{A}$ (25 °C to 125 °C)	ı	- 17	-	mV/°C
Transconductance	9 _{fe}	$V_{CE} = 100 \text{ V}, I_{C} = 25 \text{ A}, PW = 80 \mu s$	ı	43	-	S
Zero gate voltage collector current	I _{CES} (1)	V_{GE} = 0 V, V_{CE} = 600 V, T_J = 25 °C	ı	-	250	μΑ
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$	-	-	10	mA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 250	nA
Diode forward voltage drop	V _{FM}	I _C = 25 A	-	1.36	1.64	V
		I _C = 50 A	-	1.57	1.93	
		I _C = 25 A; T _J = 150 °C	-	1.19	1.42	
		I _C = 50 A; T _J = 150 °C	-	1.48	1.80	

Note

⁽¹⁾ I_{CES} includes also opposite leg overall leakage

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	I _C = 25 A	-	175	263	
Gate to emitter charge (turn-on)	Q _{ge}	V _{CC} = 480 V	-	27	41	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	71	107	
Turn-on switching loss	E _{on}	$R_{q} = 5 \Omega, I_{C} = 25 A$	-	0.13	0.20	
Turn-off switching loss	E _{off}	V _{CC} = 480 V	-	0.42	0.62	
Total switching loss	E _{tot}	$V_{GE} = \pm 15 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$	-	0.55	0.82	1
Turn-on switching loss	E _{on}	$R_{q} = 5 \Omega, I_{C} = 25 A$	-	0.39	0.59	mJ
Turn-off switching loss	E _{off}	V _{CC} = 480 V V _{GE} = ± 15 V, T _J = 125 °C	-	0.49	0.74	
Total switching loss	E _{tot}		-	0.88	1.32	
Input capacitance	C _{ies}	V _{GE} = 0 V V _{CC} = 30 V f = 1.0 MHz	-	3610	5415	
Output capacitance	C _{oes}		-	714	1071	pF
Reverse transfer capacitance	C _{res}		-	58	87	
Diode reverse recovery time	t _{rr}		-	50	-	ns
Diode peak reverse current	I _{rr}	$V_R = 200 \text{ V};$ $I_C = 25 \text{ A};$ $dI/dt = 200 \text{ A/}\mu\text{s}$	-	4.5	-	Α
Diode Recovery charge	Q _{rr}		-	112	-	nC
Diode peak rate of fall of recovery during t _b	dI _{(rec)M} /dt		-	250	-	A/μs

Document Number: 94539 Revision: 01-Mar-09

"Full Bridge" IGBT MTP Vishay High Power Products (Warp Speed IGBT), 50 A

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Operating junction temperature range	T_J		- 40	-	150	°C	
Storage temperature range	T _{Stg}		- 40	-	105		
Junction to case	R _{thJC}		-	-	0.64		
Diode			-	-	0.9	°C/W	
Case to sink per module	R _{thCS}	Heatsink compound thermal conductivity = 1 W/mK	-	0.06	-		
Clearance (1)		Externel shortest distance in air between 2 terminals	5.5	-	-		
Creepage (1)		Shortest distance along external surface of the insulating material between 2 terminals	8	-	-	- mm	
Weight				66		g	

Note

 $^{^{(1)}}$ Standard version only i.e. without optional thermistor

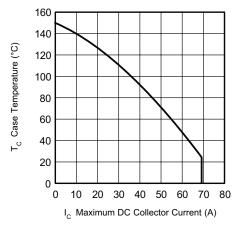


Fig. 1 - Maximum Collector Current vs. Case Temperature

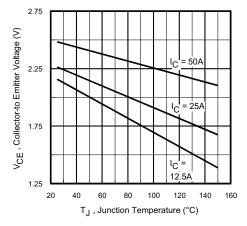


Fig. 2 - Typical Collector to Emitter Voltage vs. Junction Temperature

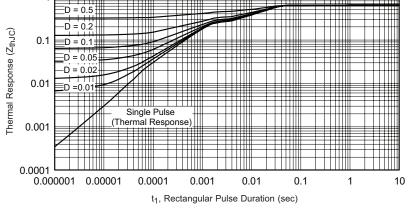


Fig. 3 - Maximum Transient Thermal Impedance, Junction to Case (IGBT)

Vishay High Power Products "Full Bridge" IGBT MTP (Warp Speed IGBT), 50 A

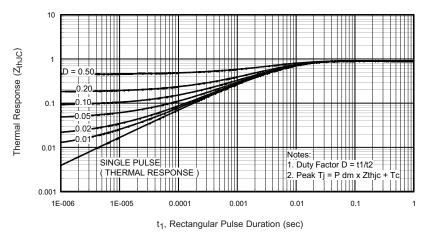


Fig. 4 - Maximum Transient Thermal Impedance, Junction to Case (Diode)

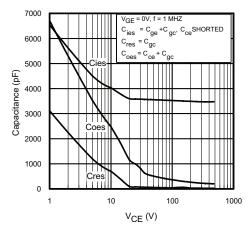


Fig. 5 - Typical Capacitance vs. Collector to Emitter Voltage

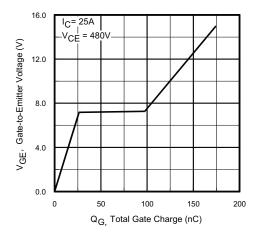


Fig. 6 - Typical Gate Charge vs. Gate to Emitter Voltage

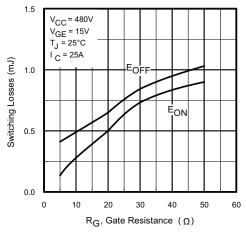


Fig. 7 - Typical Switching Losses vs. Gate Resistance

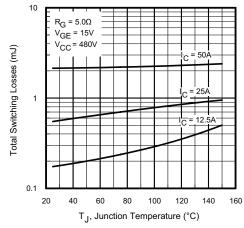


Fig. 8 - Typical Switching Losses vs. Junction Temperature

Document Number: 94539 Revision: 01-Mar-09

4

"Full Bridge" IGBT MTP Vishay High Power Products (Warp Speed IGBT), 50 A

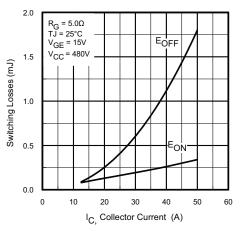


Fig. 9 - Typical Switching Losses vs. Collector to Emitter Current

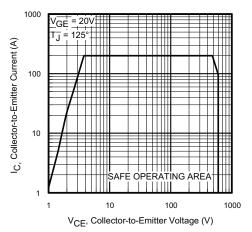


Fig. 10 - Turn-Off SOA

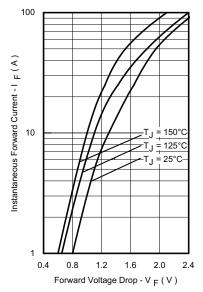


Fig. 11 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

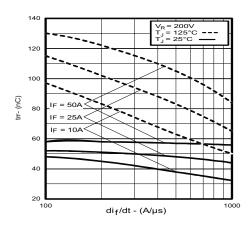


Fig. 12 - Typical Reverse Recovery Time vs. dI_F/dt

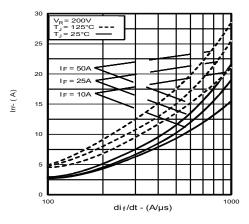


Fig. 13 - Typical Reverse Recovery Current vs. dl_F/dt

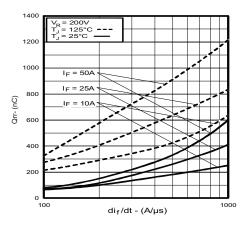


Fig. 14 - Typical Stored Charge vs. dI_F/dt

Vishay High Power Products

"Full Bridge" IGBT MTP (Warp Speed IGBT), 50 A

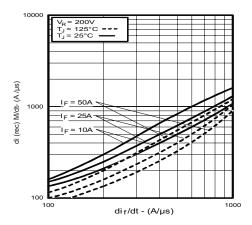


Fig. 15 - Typical $dI_{(rec)M}/dt$ vs. dI_F/dt

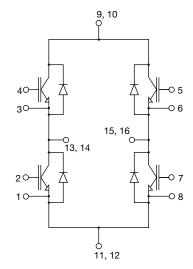
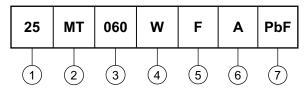
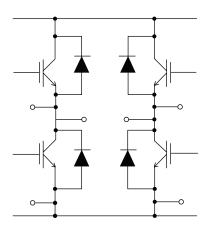


Fig. 16 - Electrical diagram


Document Number: 94539 Revision: 01-Mar-09

"Full Bridge" IGBT MTP Vishay High Power Products (Warp Speed IGBT), 50 A


ORDERING INFORMATION TABLE

Device code

- 1 Current rating (25 = 25 A)
- 2 Essential part number
- Voltage code (060 = 600 V)
- Speed/type (W = Warp IGBT)
- Circuit configuration (F = Full bridge)
- 6 $A = Al_2O_3$ DBC substrate
- 7 PbF = Lead (Pb)-free

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95245			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1