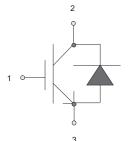


GA100XCP12-227

IGBT/SiC Diode Co-pack

 $V_{CES} = 1200 V$ $I_{CM} = 100 A$ $V_{CE(SAT)} = 2.0 V$


Features

- Optimal Punch Through (OPT) technology
- SiC freewheeling diode
- Positive temperature coefficient for easy paralleling
- Extremely fast switching speeds
- Temperature independent switching behavior of SiC rectifier
- · Best RBSOA/SCSOA capability in the industry
- High junction temperature
- · Industry standard packaging

Package

RoHS Compliant

SOT - 227

Advantages

- Industry's highest switching speeds
- High temperature operation
- Improved circuit efficiency
- Low switching losses

Applications

- Solar Inverters
- Aerospace Actuators
- Server Power Supplies
- Resonant Inverters > 100 kHz
- Inductive Heating
- Electronic Welders

Maximum Ratings, at T_i = 150 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
IGBT				
Collector-Emitter Voltage	V _{CES}		1200	V
DC-Collector Current	I _{CM}	T _c ≤ 105 °C	100	А
Gate Emitter Peak Voltage	V _{GES}		± 20	V
Operating Temperature	T _{vi}		-40 to +150	°C
Storage Temperature	T _{stq}		-40 to +150	°C
Isolation Voltage	V _{ISOL}	I _{SOL} < 1 mA, 50/60 Hz, t = 1 s	3000	V
Free-wheeling diode				
DC-Forward Current	I _F	T _c ≤ 105 °C	100	Α
Non Repetitive Peak Forward Current	I _{FM}	$T_c = 25 {}^{\circ}\text{C}, t_p = 10 \mu\text{s}$	tbd	А
Surge Non Repetitive Forward Current	I _{F,SM}	$t_p = 10$ ms, half sine, $T_c = 25$ °C	tbd	А
Thermal Characteristics				
Th. Resistance Junction to Case	R_{thJC}	IGBT	0.19	K/W
Th. Resistance Junction to Case	R _{thJC}	SiC diode	0.43	K/W

Mechanical Properties		Values		
wechanical Properties	min.	typ.	max.	
Mounting Torque M _d		1.5		Nm
Terminal Connection Torque	1.3		1.5	Nm
Weight		29		g
Case Color		White		
Dimensions	3	38X25.4X12 m		

Electrical Characteristics	ΕI	ectr	ical	Cha	aract	eris	tics
----------------------------	----	------	------	-----	-------	------	------

Parameter	Symbol	Conditions	Values			Unit
rai ailletei	Зуньон	Conditions	min.	typ.	max.	Unit
IGBT						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 2 \text{ mA}, T_{i} = 25 ^{\circ}\text{C}$	5.4	6	6.5	V
O-IIIt Foritt II Ot	CES,25	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_i = 25 ^{\circ}\text{C}$			0.5	mA
Collector-Emitter Leakage Current	I _{CES,150}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_{i} = 150 {}^{\circ}\text{C}$		0.5		mA
Gate-Leakage Current	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$			500	nA
Collector-Emitter Threshold Voltage	V _{CE(TO)}	T _j = 25°C		1.1		V
Collector Emitter Slope Resistance	K _{CF.25}	V _{GE} = 15 V, T _j = 25 °C		11		mΩ
Collector-Emitter Slope Resistance	R _{CE,150}	$V_{GE} = 15 \text{ V}, T_{j} = 150 ^{\circ}\text{C}$		25.5		mΩ
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_{c} = 100 \text{ A}, V_{GE} = 15 \text{ V}, T_{j} = 25 {}^{\circ}\text{C}(150 {}^{\circ}\text{C})$		2.0(2.1)		V
Input Capacitance	C _{ies}			tbd		nF
Output Capacitance	C _{oes}	V _{GE} = 0 V, V _{CE} = 25 V, f = 1 MHz		tbd		nF
Reverse Transfer Capacitance	C _{res}			tbd		nF
Gate Charge	$Q_{_{\rm G}}$	$V_{CC} = 520 \text{ V}, I_{C} = 100 \text{ A}, V_{GE} = 15 \text{V}$		400		nC
Stray Inductance Module	L _σ			5		nΗ
Module Lead Resistance	R _{mod}	T _c = 25 (150) °C		tbd		mΩ
Reverse Bias Safe Operating Area	RBSOA	T_{j} =125 °C, R_{g} =56 Ω , V_{cc} =1200 V, V_{GE} =15 V		150		Α
Short Circuit Current	sc	$T_{i} = 125 {}^{\circ}\text{C}, R_{g} = 56\Omega,$		200		Α
Short Circuit Duration	t _{sc}	$V_{CC} = 900 \text{ V}, V_{GE} = \pm 15 \text{ V}$			10	μs
Rise Time	t _r			124		ns
Fall Time	t _f	$V_{cc} = 700 \text{ V}, I_{c} = 100 \text{ A},$		176		ns
Turn On Delay Time	t _{d(on)}	$R_{gon} = R_{goff} = 12 \Omega,$ $V_{GE(0n)} = 15 V, V_{GE(0ff)} = -8 V,$ $T_{j} = 125 {}^{\circ}C$		104		ns
Turn Off Delay Time	t _{d(off)}			560		ns
Turn-On Energy Loss Per Pulse	E			4.47		mJ
Turn-Off Energy Loss Per Pulse	E _{off}			17.7		mJ
Free-wheeling diode						
Forward Voltage	V _F	$I_F = 100 \text{ A}, V_{GE} = 0 \text{ V}, T_j = 25 \text{ °C } (150 \text{ °C })$		2.4(3.7)		V
Threshold Voltage at Diode	V _{D(TO)}	T _i = 25 °C		0.8		V
Peak Reverse Recovery Current	I	,		16		Α
Reverse Recovery Time	t _{rr}	$I_F = 100 \text{ A}, V_{GE} = 0 \text{ V}, V_R = 600 \text{ V}$		60		ns
Diode peak rate of fall of reverse recovery current during tb	dl _r /dt	$-dI_{p}/dt = 625 \text{ A/}\mu\text{s}, T_{j} = 125 ^{\circ}\text{C}$		550		A/µs

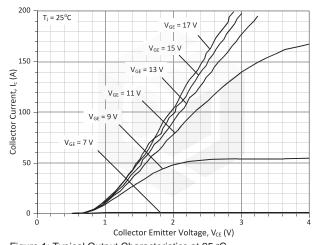


Figure 1: Typical Output Characteristics at 25 $^{\circ}\text{C}$

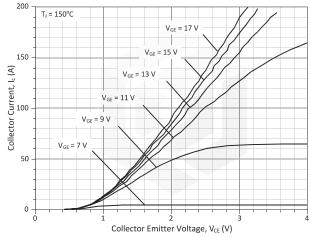


Figure 2: Typical Output Characteristics at 150 °C

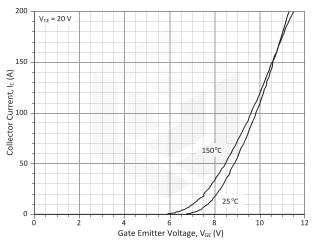


Figure 3: Typical Transfer Characteristics

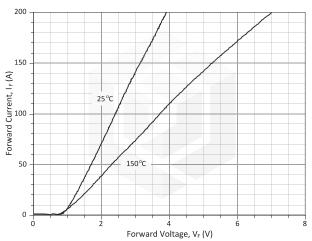


Figure 5: Typical FWD Forward Characteristics

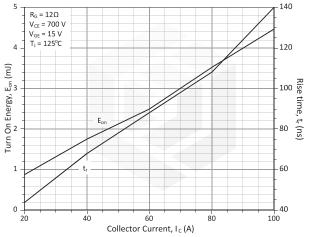


Figure 7: Typical Turn On Energy Losses and Switching Times

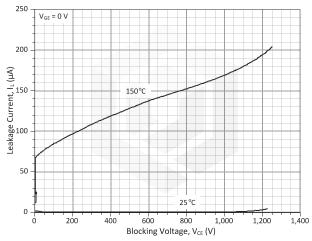


Figure 4: Typical Blocking Characteristics

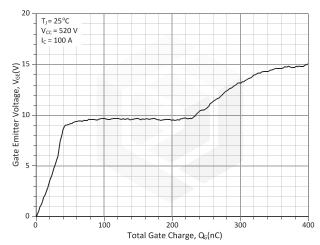


Figure 6: Typical Turn On Gate Charge

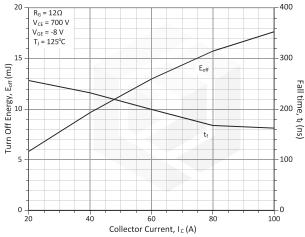


Figure 8: Typical Turn Off Energy Losses and Switching Times

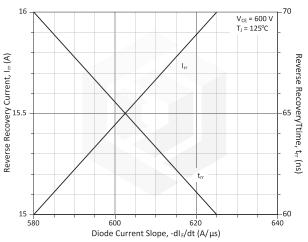
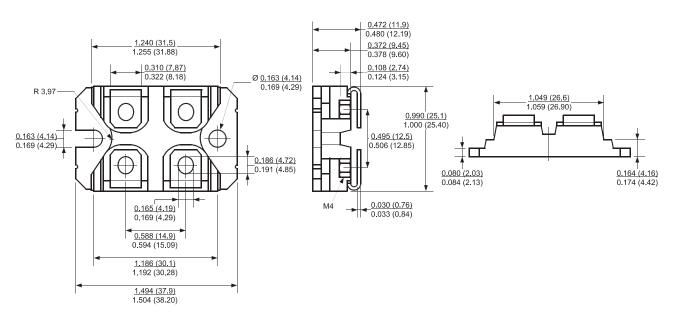



Figure 9: Typical Reverse Recovery Currents and Times

Package Dimensions:

SOT-227

PACKAGE OUTLINE

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2011/01/06	1	First generation release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.