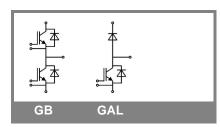


Trench IGBT Module

SKM 600GB126D SKM 600GAL126D

Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*

- · AC inverter drives
- UPS
- · Electronic welders

Remarks

• I $_{DC} \le 500A$ for $T_{Terminal} = 100$ °C

Absolute Maximum Ratings				T _c = 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT							
V _{CES}	T _j = 25 °C T _i = 150 °C			1200	V		
I _C	T _j = 150 °C	T _c = 25 °C		660	Α		
		$T_c = 80 ^{\circ}C$		460	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}			800	Α		
V_{GES}				± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C		10	μs		
Inverse D	iode				•		
I _F	T _j = 150 °C	T_c = 25 °C		490	Α		
		T _c = 80 °C		340	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}			800	Α		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C		2880	Α		
Freewhee	ling Diode						
I _F	T _j = 150 °C	T_c = 25 °C		490	Α		
		T_c = 80 °C		340	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}			800	Α		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C		2880	Α		
Module							
I _{t(RMS)}				500	Α		
T _{vj}				- 40 + 150	°C		
T _{stg}				- 40 + 125	°C		
V _{isol}	AC, 1 min.			4000	V		

Character	25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 16 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C		0,2	0,6	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	2,4	mΩ
		$T_j = 125^{\circ}C$		2,8	3,4	mΩ
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V			1,7	2,15	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,45	V
C _{ies}				32		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		11		nF
C _{res}				2,2		nF
Q_G	V _{GE} = -8V - +20V			3600		nC
R _{Gint}	T _j = °C			1,88		Ω
t _{d(on)}				290		ns
Ţ,	$R_{Gon} = 2 \Omega$	V _{CC} = 600V		60		ns
Ė _{on}		I _C = 400A		39		mJ
^t d(off)	$R_{Goff} = 2 \Omega$	T _j = 125 °C		670		ns
t _f		$V_{GE} = \pm 15V$		80		ns
E _{off}				64		mJ
R _{th(j-c)}	per IGBT				0,055	K/W

Trench IGBT Module

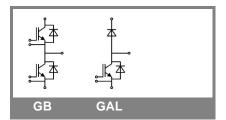
SKM 600GB126D SKM 600GAL126D

Features

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*

- · AC inverter drives
- UPS
- Electronic welders


Remarks

• $I_{DC} \le 500A$ for $T_{Terminal} = 100 \, ^{\circ}C$

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse diode							
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,6	1,8	V	
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6	1,8	V	
V _{F0}		$T_{j} = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_{j} = 25 ^{\circ}\text{C}$		1	1,1	V	
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,8	0,9	V	
r _F		T _j = 25 °C		1,5	1,8	mΩ	
		T _j = 125 °C		2	2,3	mΩ	
I _{RRM}	I _F = 400 A	T _j = 125 °C		475		Α	
Q_{rr}	di/dt = 7600 A/µs			96		μC	
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 600 \text{ V}$			41		mJ	
$R_{th(j-c)D}$	per diode				0,125	K/W	
	eling Diode						
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,6	1,8	V	
		$T_{j} = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_{j} = 25 ^{\circ}\text{C}$		1,6	1,8	V	
V_{F0}				1	1,1	V	
		T _j = 125 °C		0,8	0,9	V	
r _F		T _j = 25 °C		1,5	1,8	V	
		T _j = 125 °C		2	2,3	V	
I _{RRM}	I _F = 400 A	T _j = 125 °C		475		Α	
Q_{rr}	di/dt = 7600 A/µs			96		μC	
E _{rr}	V _{GE} = -15 V; V _{CC} = 600 V			41		mJ	
$R_{th(j-c)FD}$	per diode				0,125	K/W	
Module							
L _{CE}				15	20	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

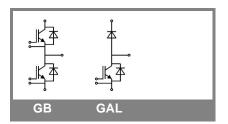
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

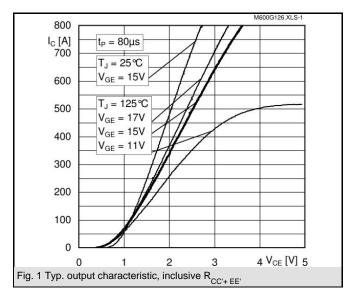
Trench IGBT Module

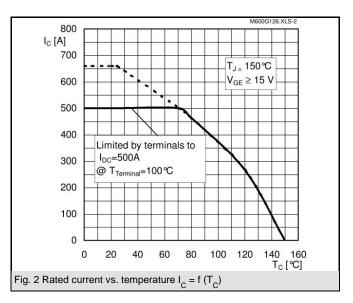
SKM 600GB126D SKM 600GAL126D

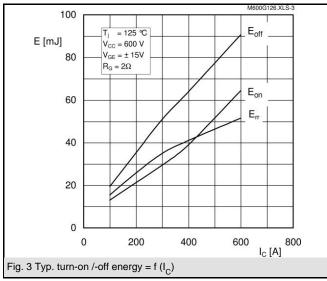
Feat	ures
-------------	------

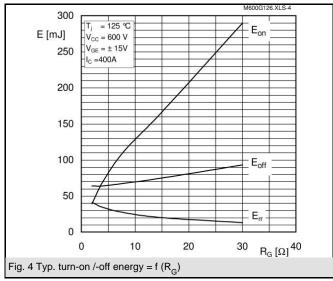

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

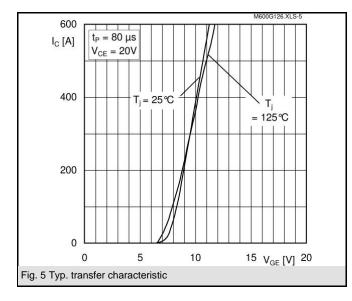
Typical Applications*


- AC inverter drives
- UPS
- · Electronic welders


Remarks


• I $_{DC} \le 500A$ for $T_{Terminal} = 100$ °C




Z _{th} Symbol	Conditions	Values	Units
Z.,	•		
Z _{Ri}	i = 1	38	mk/W
R _i	i = 2	13	mk/W
R _i	i = 3	3,4	mk/W
R _i	i = 4	0,6	mk/W
tau _i	i = 1	0,0836	s
tau _i	i = 2	0,009	s
tau _i	i = 3	0,0024	s
tau _i	i = 4	0,0002	s
Z,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Z R _i th(j-c)D	i = 1	75	mk/W
Ri	i = 2	39	mk/W
Ri	i = 3	9,5	mk/W
Ri	i = 4	1,5	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,0101	s
tau _i	i = 3	0,002	s
tau _i	i = 4	0,0003	s

