

SEMITRANS[®] 4

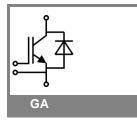
Trench IGBT Modules

SKM 800GA126D

Features

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*


- AC inverter drives
- UPS
- Electronic welders

Remarks

+ $I_{DC} \leq$ 500A limited by terminals

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifie				
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	960	A
		T _{case} = 80 °C	620	A
I _{CRM}	I _{CRM} =2xI _{Cnom}		1200	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	iode			
I _F	T _j = 150 °C	T _{case} = 25 °C	680	A
		T _{case} = 125 °C	470	A
I _{FRM}	I _{FRM} =2xI _{Fnom}		1200	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	3600	А
Module				
I _{t(RMS)}			500	А
T _{vj}			- 40 + 150	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_{C} = 16 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,2	1,7	mΩ
		T _j = 125°C		1,8		mΩ
V _{CE(sat)}	I _{Cnom} = 600 A, V _{GE} = 15 V			1,7	2,15	V
		T _j = 125°C _{chiplev.}		2		V
C _{ies}				42		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		3,3		nF
C _{res}				3,1		nF
Q _G	V _{GE} = -8V - +20V			5200		nC
R _{Gint}	T _j = °C			1,25		Ω
t _{d(on)}				220		ns
t _r	$R_{Gon} = 3 \Omega$	V _{CC} = 600V		100		ns
E _{on}	-	I _C = 600A		65		mJ
t _{d(off)}	$R_{Goff} = 3 \Omega$	$T_{j} = 125 ^{\circ}C$		860		ns
t _r		V _{GE} = ± 15V		135 95		ns
E _{off}				90		mJ
R _{th(j-c)}	per IGBT				0,042	K/W

SEMITRANS[®] 4

Trench IGBT Modules

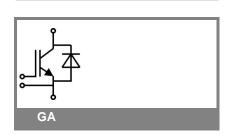
SKM 800GA126D

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse 🛛							
$V_F = V_{EC}$	I _{Fnom} = 600 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,6	1,8	V	
		T _j = 125 °C _{chiplev.}		1,6	1,8	V	
V _{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 125 °C		0,8	0,9	V	
r _F		T _j = 25 °C		1	1,2	mΩ	
		T _j = 125 °C		1,3	1,5	mΩ	
I _{RRM}	I _F = 600 A	T _j = 125 °C		540		А	
Q _{rr}	di/dt = 6000 A/µs	-		125		μC	
Err	V_{GE} = -15 V; V_{CC} = 600 V			59		mJ	
R _{th(j-c)D}	per diode				0,09	K/W	
Module			·				
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ	
		T _{case} = 125 °C		0,22		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm	
w					330	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks

• $I_{DC} \leq 500A$ limited by terminals

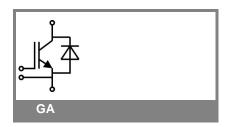
SEMITRANS[®] 4

Trench IGBT Modules

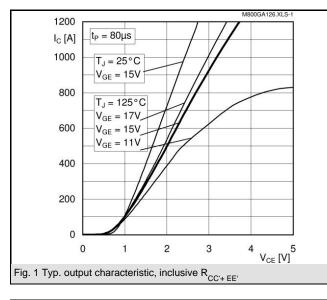
Z _{th}						
Symbol	Conditions	Values	Units			
Z Ri Ri	i = 1	30	mk/W			
R _i	i = 2	9,5	mk/W			
R _i	i = 3	2,2	mk/W			
R _i	i = 4	0,3	mk/W			
tau	i = 1	0,1043	S			
tau	i = 2	0,009	s			
tau _i	i = 3	0,0015	s			
tau _i	i = 4	0,004	s			
	•					
Z _{Ri} th(j-c)D	i = 1	62	mk/W			
R _i	i = 2	23	mk/W			
R _i	i = 3	4,2	mk/W			
R _i	i = 4	0,8	mk/W			
tau	i = 1	0,0566	S			
tau _i	i = 2	0,0166	s			
tau _i	i = 3	0,0015	s			
tau _i	i = 4	0,0002	s			

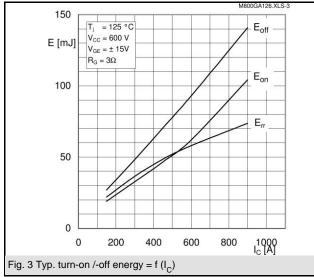
Features

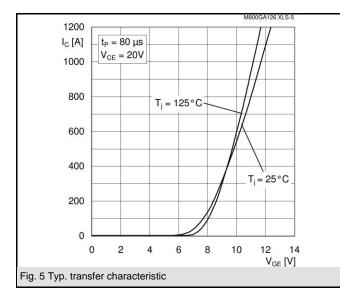
SKM 800GA126D

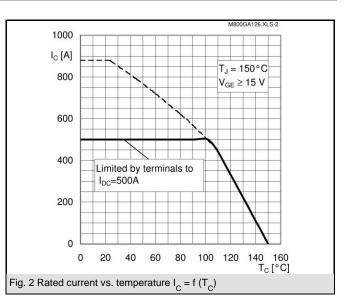

- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

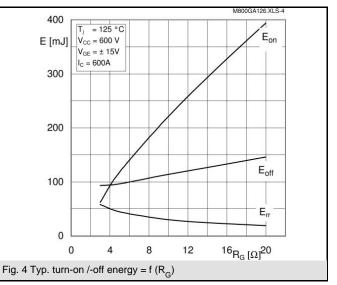
Typical Applications*

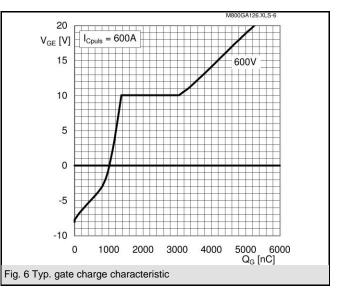

- AC inverter drives
- UPS
- Electronic welders

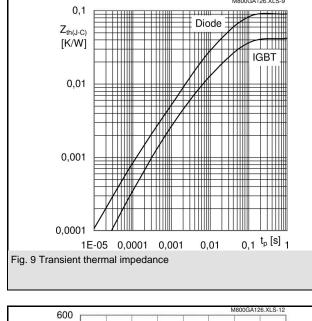

Remarks

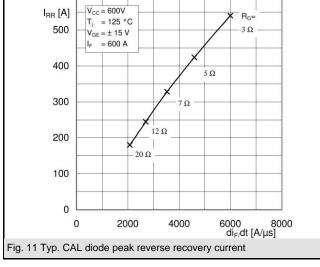

+ $I_{DC} \le 500A$ limited by terminals

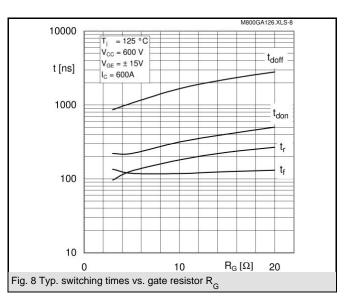



3

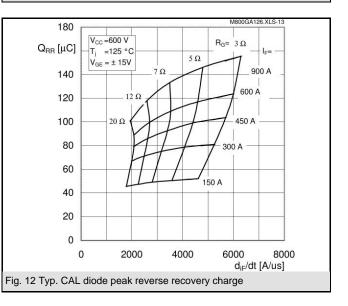


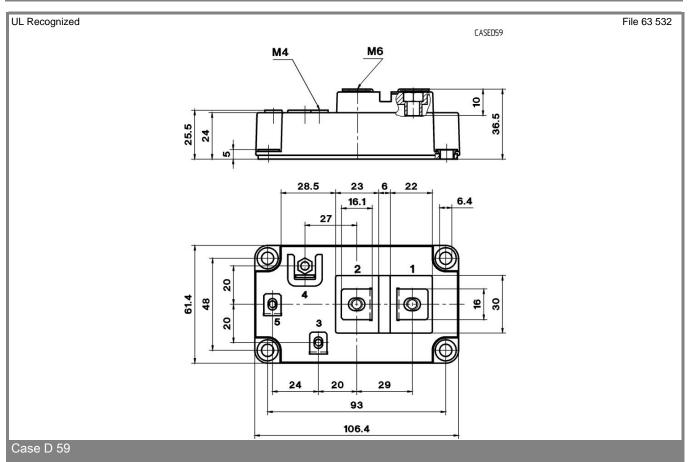


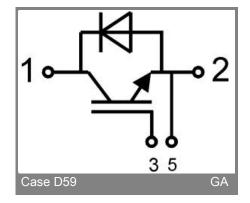




4






© by SEMIKRON

06-10-2009 NOS

Downloaded from Elcodis.com electronic components distributor

5

