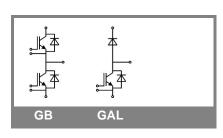


Trench IGBT Modules


SKM 200GB126D **SKM 200GAL126D**

Features

- Trench = Trenchgate technology
 V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- Electronic welders
- AC inverter drives
- UPS

Absolute	Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified				
Symbol	Conditions		Values	Units	
IGBT	•			•	
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 150 ^{\circ}\text{C}$		1200	V	
I _C	T _j = 150 °C	T _c = 25 °C	260	Α	
		T _c = 80 °C	190	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs	
Inverse I	Diode				
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	200	Α	
		T _c = 80 °C	140	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1100	Α	
Freewhe	eling Diode				
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	200	Α	
		T _c = 80 °C	140	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1100	Α	
Module					
I _{t(RMS)}			500	Α	
T_{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	

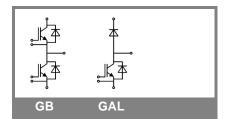
Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4,7	6,3	mΩ
		$T_j = 125^{\circ}C$		7,3	9	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,7	2,15	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,45	V
C _{ies}				10,8		nF
C _{oes}	V _{CE} = 25, V _{GE} = 0 V	f = 1 MHz		0,9		nF
C _{res}				0,9		nF
Q_G	V _{GE} = -8V - +20V			1530		nC
R _{Gint}	T _j = 25 °C			5		Ω
t _{d(on)}				260		ns
lt _r	R_{Gon} = 1,5 Ω	V _{CC} = 600V		40		ns
E _{on}	D 450	I _C = 150A		18		mJ
t _{d(off)}	R_{Goff} = 1,5 Ω	T _j = 125 °C		540		ns
t _f		$V_{GE} = \pm 15V$		110		ns
E _{off}						mJ
R _{th(j-c)}	per IGBT				0,13	K/W

Trench IGBT Modules

SKM 200GB126D SKM 200GAL126D

Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C


Typical Applications*

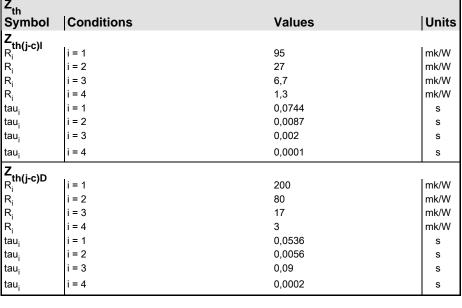
- Electronic welders
- AC inverter drives
- UPS

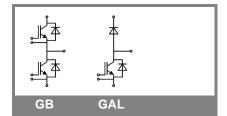
Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse d	iode					
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev} .		1,6	1,8	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6	1,8	V
V _{F0}		$T_{j} = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_{j} = 25 ^{\circ}\text{C}$		1	1,1	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		0,8	0,9	V
r _F				4	4,7	mΩ
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 125 ^{\circ}\text{C}$		5,3	6	mΩ
I _{RRM}	I _F = 150 A	T _j = 125 °C		240		Α
Q _{rr}	di/dt = 5000 A/μs			42		μC
E _{rr}	V _{GE} = -15 V; V _{CC} = 600 V					mJ
$R_{\text{th(j-c)D}}$	per diode				0,3	K/W
FWD						
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,6	1,8	V
		$T_{j} = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_{j} = 25 ^{\circ}\text{C}$		1,6	1,8	V
V_{F0}				1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		T _j = 25 °C		4	4,7	V
		T _j = 125 °C		5,3	6	V
I _{RRM}	I _F = 150 A	T _j = 125 °C		240		A
Q _{rr}	di/dt = 5000 A/µs			42		μC
E _{rr}	V _{GE} = -15 V; V _{CC} = 600 V					mJ
R _{th(j-c)FD}	per diode				0,3	K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module	_			0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					325	g

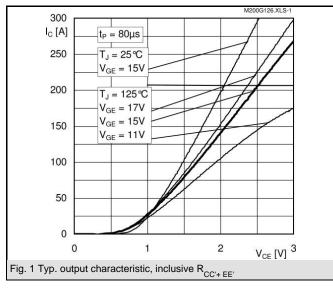
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

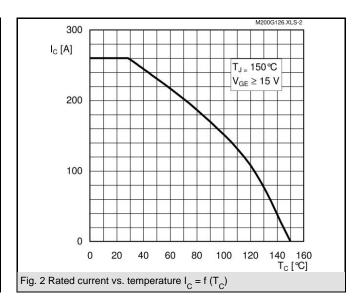
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

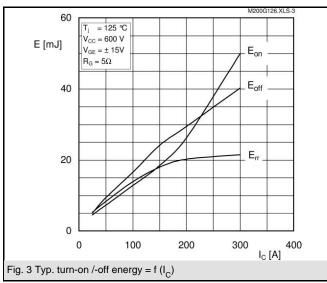
Trench IGBT Modules


SKM 200GB126D SKM 200GAL126D


Fe	at	ur	es


- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C


Typical Applications*


- Electronic welders
- AC inverter drives
- UPS

