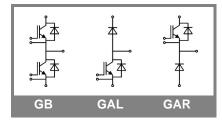


Ultra Fast IGBT Modules


SKM 200GB125D SKM 200GAL125D SKM 200GAR125D

Features

- · N channel, homogeneous Si
- · Low inductance case
- · Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- · Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distance (20 mm)

Typical Applications*

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Absolute	Maximum Ratings	25 °C, unless otherwise specified		
Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	200	Α
		T _{case} = 80 °C	160	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse D				
I _F	T _j = 150 °C	T _{case} = 25 °C	200	Α
		T _{case} = 80 °C	130	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	Α
Freewhee	eling Diode			
I _F	$T_j = {^{\circ}C}$	$T_c = 25 ^{\circ}C$	200	Α
		T _c = 80 °C	130	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	t _p = 10 ms;	T _j = 150 °C	1440	Α
Module				
I _{t(RMS)}			500	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		4000	V

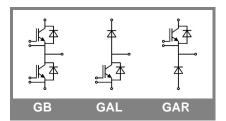
Characteristics T _c =			25 °C, ui	nless oth	erwise sp	ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•		•			·•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		1,5	1,75	V
		T _j = 125 °C				V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		12	14	mΩ
		T _j = 125°C				$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		3,3	3,85	V
C _{ies}				10	13	nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,5	2	nF
C _{res}				0,8	1,2	nF
Q_G	V _{GE} = 0V - +20V			1300		nC
R _{Gint}	T _j = °C			2,5		Ω
t _{d(on)}				75		ns
t,	$R_{Gon} = 4 \Omega$	V _{CC} = 600V		36		ns
Ė _{on}		I _C = 150A		14		mJ
$t_{d(off)}$	$R_{Goff} = 4 \Omega$	T _j = 125 °C		420		ns
t_f		$V_{GE} = \pm 15V$		25		ns
E _{off}						mJ
$R_{\text{th(j-c)}}$	per IGBT			·	0,09	K/W

Ultra Fast IGBT Modules

SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

Features

- · N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

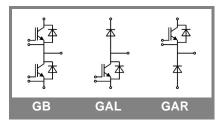
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						•
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r_F		T _j = 25 °C		6	8,7	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _F = 150 A	T _j = 125 °C		230		Α
Q _{rr}	di/dt = 5500 A/μs			24		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)D}$	per diode				0,25	K/W
	eling Diode					
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V			2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r_F		T _j = 25 °C		6	8,7	V
		T _j = 125 °C				V
I _{RRM}	I _F = 150 A	T _j = 125 °C		230		A
Q _{rr}	di/dt = 5500 A/µs			24		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode				0,25	K/W
Module						
L _{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		$m\Omega$
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

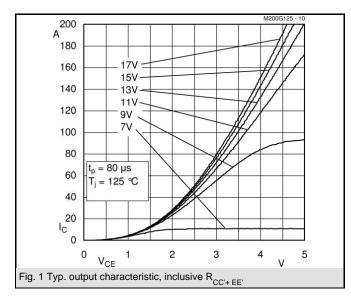
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

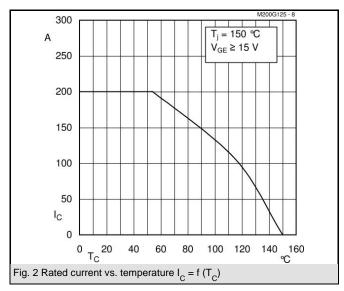
04-05-2007 SEI © by SEMIKRON

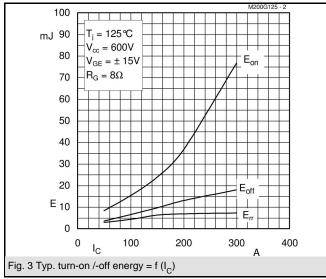
Ultra Fast IGBT Modules

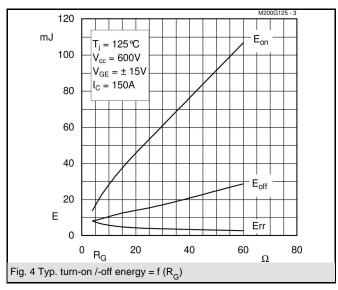

SKM 200GB125D SKM 200GAL125D SKM 200GAR125D

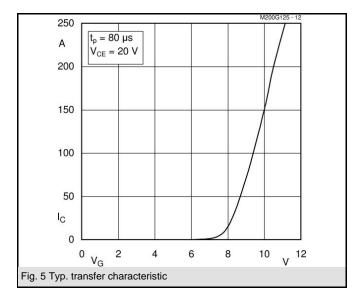
Features

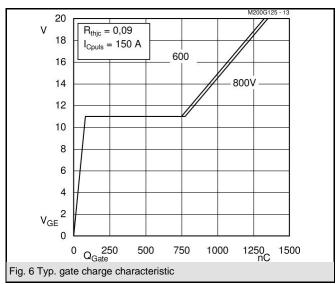

- N channel, homogeneous Si
- · Low inductance case
- · Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- · Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distance (20 mm)

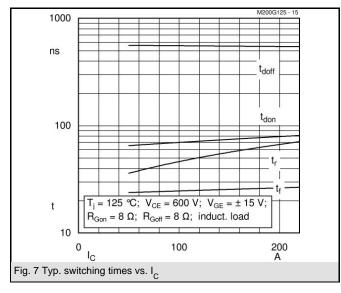

Typical Applications*

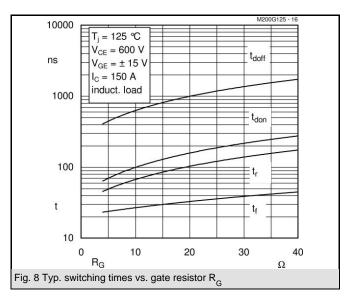

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

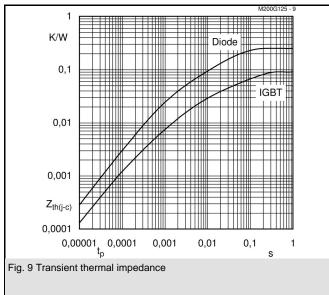


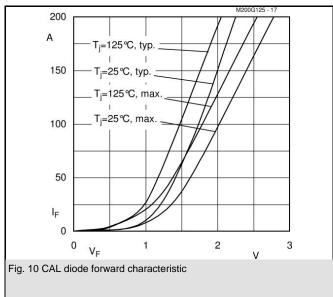

Z _{th}	C	Values	llinita
Symbol	Conditions	Values	Units
Z _{Ri}			
R _i	i = 1	60	mk/W
R _i	i = 2	23	mk/W
R_i	i = 3	5,9	mk/W
R_{i}	i = 4	1,1	mk/W
tau _i	i = 1	0,0744	s
tau _i	i = 2	0,0087	s
tau _i	i = 3	0,002	s
tau _i	i = 4	0,0015	s
Z R _i th(j-c)D			
R _i	i = 1	160	mk/W
R _i	i = 2	67	mk/W
R_{i}	i = 3	20	mk/W
Ri	i = 4	3	mk/W
tau _i	i = 1	0,0536	s
tau _i	i = 2	0,0034	s
tau _i	i = 3	0,077	s
tau _i	i = 4	0,0003	s

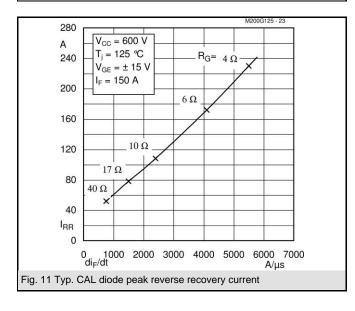


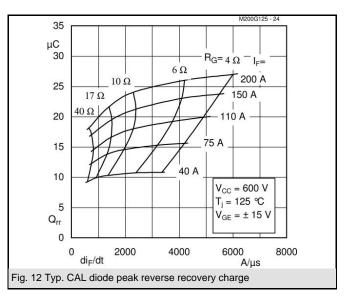


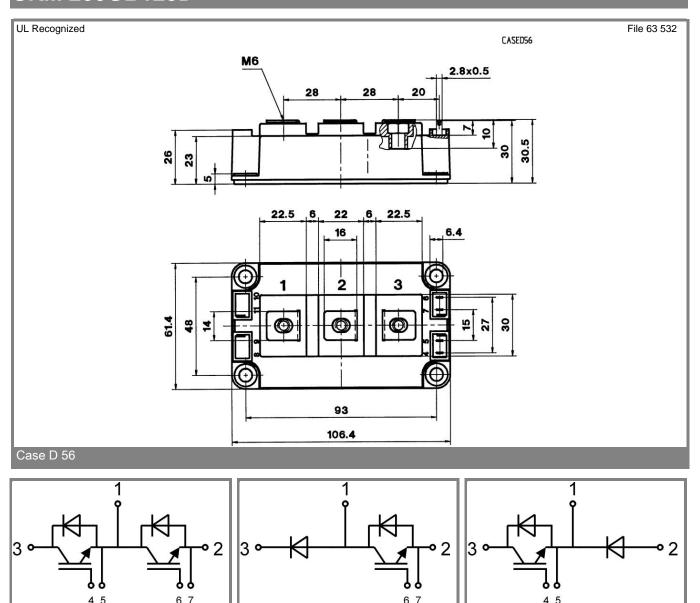












Case D 57 (→ D 56)

GAR

Case D 58 (→ D 56)

Case D 56

GAL