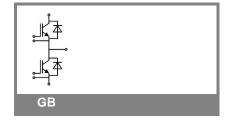


Superfast NPT-IGBT Module

SKM 100GB063D

Features


- N channel, homogeneous Silicon structure (NPT- Non punch through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
 Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- · Isolated copper Bonding Technology without hard mould
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications*

- Switching (not for linear use)
- Switched mode power supplies
- Three phase inverters for servo / AC motor speed control
- Pulse frequencies also above 10 kHz

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		600	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	130	Α	
		T _{case} = 70 °C	100	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		200	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le$ 20 V; $V_{CES} <$ 600 V	T _j = 125 °C	10	μs	
Inverse D	iode			l	
I _F	T _j = 150 °C	T _{case} = 25 °C	100	Α	
		T _{case} = 80 °C	75	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	720	Α	
Module					
I _{t(RMS)}			200	Α	
T_{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_c =$			25 °C, ur	nless oth	erwise sp	ise specified			
Symbol	Conditions		min.	typ.	max.	Units			
IGBT									
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V			
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA			
V_{CE0}		T _j = 25 °C		1,05		V			
		T _j = 125 °C		1		V			
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10,5		mΩ			
		T _j = 125°C		14		$m\Omega$			
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			2,1	2,5	V			
		$T_j = 125^{\circ}C_{chiplev.}$		2,4	2,8	V			
C _{ies}				5,6		nF			
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF			
C _{res}				0,4		nF			
Q_G	V _{GE} = 0V - +15V			240		nC			
R_{Gint}	T _j = °C			0		Ω			
t _{d(on)}				50		ns			
t _r	$R_{Gon} = 10 \Omega$	V _{CC} = 300V		40		ns			
E _{on}		I _C = 100A		4		mJ			
t _{d(off)}	$R_{Goff} = 10 \Omega$	T _j = 125 °C		300 35		ns			
t _f		V'_{GE} = ±15 V		35		ns			
E _{off}				3		mJ			
R _{th(j-c)}	per IGBT				0,27	K/W			

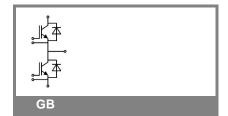
Superfast NPT-IGBT Module

SKM 100GB063D

F	ea	tu	re	S
	u	w		•

- N channel, homogeneous Silicon structure (NPT- Non punch through IGBT)
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
 Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free

- Fast & soft inverse CAL diodes
- Isolated copper Bonding Technology without hard mould
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications*

- Switching (not for linear use)
- Switched mode power supplies
- Three phase inverters for servo / AC motor speed control
- Pulse frequencies also above 10 kHz

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V			1,55	1,9	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,55		V		
V_{F0}		T _j = 125 °C			0,9	V		
r _F		T _j = 125 °C		8	10	mΩ		
I _{RRM}	I _F = 100 A	T _j = 125 °C		44		Α		
Q_{rr}		-		6		μC		
E _{rr}	V _{GE} = -15 V; V _{CC} = 300 V					mJ		
$R_{\text{th(j-c)D}}$	per diode				0,6	K/W		
Module								
L _{CE}					30	nΗ		
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ		
		T _{case} = 125 °C		1		mΩ		
R _{th(c-s)}	per module				0,05	K/W		
M _s	to heat sink M6		3		5	Nm		
M _t	to terminals M5		2,5		5	Nm		
w					160	g		

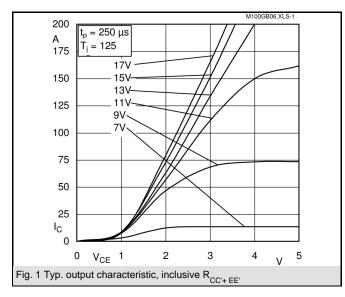
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

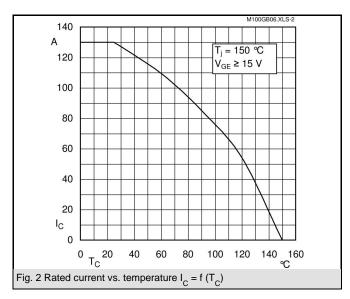
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

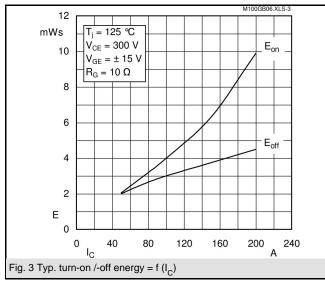
Superfast NPT-IGBT Module

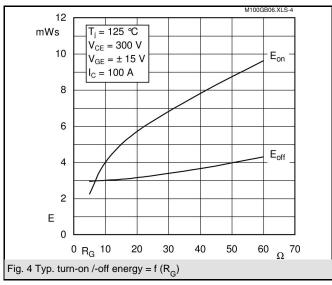

SKM 100GB063D

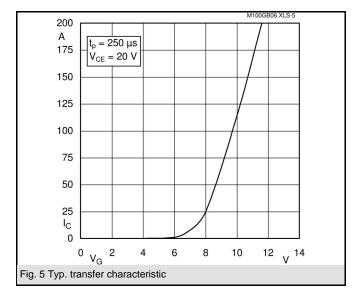
Features


- N channel, homogeneous Silicon structure (NPT- Non punch through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
 Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- · Isolated copper Bonding Technology without hard mould
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications*


- Switching (not for linear use)
- Switched mode power supplies
- Three phase inverters for servo / AC motor speed control
- Pulse frequencies also above 10 kHz




Z _{th}							
Symbol	Conditions	Values	Units				
Z ₁₁₋₇₁₋₂₁₁							
Z R _i th(j-c)I	i = 1	160	mk/W				
R_i	i = 2	88	mk/W				
R_i	i = 3	18	mk/W				
R_i	i = 4	4	mk/W				
tau _i	i = 1	0,0447	s				
tau _i	i = 2	0,0087	s				
tau _i	i = 3	0,0015	s				
tau _i	i = 4	0,0002	s				
Z _{th(j-c)D}							
R _i	i = 1	400	mk/W				
Ri	i = 2	165	mk/W				
R_i	i = 3	30,5	mk/W				
R_i	i = 4	4,5	mk/W				
tau _i	i = 1	0,0613	S				
tau _i	i = 2	0,0085	s				
tau _i	i = 3	0,0045	s				
tau _i	i = 4	0,0003	s				

